
 
Summary and resources from the Online Workshop: Databases and Software 
Tools for (FT)-IR Spectra for Microplastic Analysis   
03.06.25 

The workshop was hosted by the joint collaboration between Norman Network, PlasticTrace, 
EAWAG and NIVA. This summary includes resources and publications shared during the 
workshop, and all presentations delivered during the workshop. 

We welcome your feedback and suggestions for topics to include in future workshops—
please don’t hesitate to get in touch with us: 

Ralf Kägi: ralf.kaegi@eawag.ch   

Bert van Bavel: bert.vanbavel@niva.no  

Vilde Kloster Snekkevik: vilde.snekkevik@niva.no  

 

Resources which were shared during the discussions:  

For the Dutch monitoring of microplastics in marine sediments, developed in close cooperation 
with and performed by the NIVA laboratory, we have developed an R package, siMPleR, in 
cooperation with Wageningen University (NL). This package aggregates individual siMPle result 
files, performs basic QC on these files, performs basic data analyses and produces basic 
results tables and figures. A special feature of this package is that it integrates QC of a selection 
of microplastic records produced by siMPle using the Open Specy database, by adding the QC 
results in the siMPle import files. 

Also note that Win Cowger has made it possible to directly import FTIR spectra, exported by 
siMPle, into Open Specy for an efficient quality control process. 

We think that the combination of siMPle and Open Specy is a relatively simple and powerful 
combination for policy-oriented monitoring. However, other reference databases can of course 
also be used for external quality control. 

The package is freeware and available from: 

https://git.wur.nl/Walvo001/simpler 

If you have any questions or comments about this package, please let us know. 

With best regards, 

Willem van Loon and Dennis Walvoort 

Willem.van.loon@rws.nl 

Dennis.walvoort@wur.nl  
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Agilent Whitepaper: https://www.agilent.com/cs/library/whitepaper/public/wp-microplastics-
infrared-spectral-range-5994-8037en-agilent.pdf 

JCGM Publications: Guides in Metrology: 
https://www.bipm.org/en/committees/jc/jcgm/publications  

 

Publications which were shared during the discussions:  

• DOI 10.1016/j.talanta.2021.122624  
• https://doi.org/10.1016/j.ecoenv.2024.116243 
• https://pubs.acs.org/doi/10.1021/acs.est.4c09427 
• DOI: 10.1016/j.scitotenv.2023.163612  
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Summary of the discussions based on the questions, answers and comments in the chat (AI 
generated):  

For the quantification microplastics, setting clear limits of detection (LOD) and limits of 
quantification (LOQ) is essential. Measurements below the LOQ typically carry uncertainties 
greater than 30%, and when approaching the LOD, uncertainties can exceed 100%. This 
highlights a critical limitation: we often cannot identify smaller particles with confidence. As 
demonstrated in specific case examples, these uncertainties must be accepted and 
transparently reported. Any software used for microplastic analysis should include 
functionality to define and communicate these detection and quantification limits. 

Filter selection also plays a key role in the quality of microplastic data. Currently, silver filters 
are emerging as a practical choice due to their affordability (approximately $2 per filter) and 
their flat, reflective surface. While options like silicone, Anodisc, or gold-coated polycarbonate 
offer superior analytical performance, they come at a significantly higher cost—around $20 per 
filter—creating a trade-off between budget and precision. 

A common benchmark in microplastic studies is the collection of at least 100 particles per 
sample to ensure statistical representativeness. However, this threshold is not always 
attainable, especially in samples with low particle abundance or when processing is expensive. 
In light of this, some researchers are questioning whether we should move away from rigid 
particle count requirements. Modern, high-throughput, algorithm-driven workflows now offer 
the ability to rigorously quantify uncertainty, making it possible to shift the emphasis from 
arbitrary thresholds toward more meaningful, data-driven confidence estimates. For example, 
one lab reported an average 14% underestimation in particle counts and now provides 
detailed uncertainty metrics to collaborators, embracing this more flexible and transparent 
approach. 

In terms of instrument settings, it’s important to note that when using stainless steel mesh 
filters, the step size (or resolution) of the device should actually be larger than the mesh holes. 
This allows the instrument to “smooth over” the mesh structure rather than being disrupted 
by it. Additionally, spectral resolution constraints must be considered: while FTIR data can be 
downscaled to LDIR wavelengths, the reverse is not possible, requiring thoughtful planning in 
spectral analysis. 

Measurement uncertainty remains a complex and often misunderstood topic in this field. 
Despite the formal definition provided by the International Vocabulary of Metrology (VIM), 
many still conflate general variability with true uncertainty. The latter should encompass all 
influencing factors—from sampling to instrumental limitations—and be estimated according to 
rigorous, standardized metrological procedures. At present, inconsistent terminology and 
approaches reflect the broader lack of harmonization in microplastic research. This gap 
underscores the need for collaborative standardization efforts and interlaboratory 
comparisons (ILCs), which can help establish the actual detection and quantification 
capabilities of current methodologies. As some experts suggest, we may currently be 
overestimating our analytical precision. 

Another source of uncertainty stems from the environmental transformation of particles. 
Physical aging, chemical interactions, and surface coatings (such as biofilms, heavy metals, or 



PAHs) can significantly alter a particle's FTIR spectral signature, increasing the risk of 
misidentification or false negatives. These issues call for the development of robust pre-
processing or correction algorithms, as well as updated reference libraries that account for 
environmentally induced spectral distortions. 

Ultimately, to ensure that microplastic data generated today remains meaningful and useful in 
the future, we need to develop tools and frameworks that allow for transparent, comparative, 
and standardized uncertainty assessment. This includes defining what level of uncertainty is 
acceptable for specific research or regulatory contexts—effectively answering the question: 
"how good is good enough?".  

 

 



Databases and Software Tools for 
(FT)-IR Spectra for Microplastic Analysis 

Tuesday 3rd of June, 14:00 - 16:00 CEST

NORMAN Working Group N°4: Nano- and micro-scale particulate contaminants

Ralf Kägi (Eawag), Bert van Bavel (NIVA), Vilde Kloster Snekkevik (NIVA)

Working Group N°4: Nano- and micro-scale 
particulate contaminants 



The NORMAN network on 
Chemicals of Emerging Concern

www.norman-network.net

Working Group N°4: Nano- and micro-scale 
particulate contaminants 

http://www.norman-network.net/


Network of reference laboratories, research centers and related organisations for 
monitoring of emerging environmental substances

• Who is NORMAN:  

• Non-profit association since 2009 (former EU-funded project)

• More than 90 members from leading organisations in Europe, North America, Asia, 
Australia 

• Mission:

• Enhance the exchange of information and collection of data on emerging environmental 
substances

• Improve data quality
• Encourage the validation and harmonisation of common measurement methods and monitoring tools so that 

the demands of risk assessors can be better met

• Promote synergies among research teams and more efficient transfer of research findings 
to policy-makers

• Vision:

• Independent, transparent and open network working for a sustainable environment

• Bridge between science and policy-making

• Platform for innovative initiatives to address contaminants of emerging concern in the 
environment and new monitoring challenges

Working Group N°4: Nano- and micro-scale 
particulate contaminants 



NORMAN Working Groups

C:\Users\User\Desktop\WG SCHEME.jpg

WG1: Prioritisation
WG2: Bioassays and biomarkers in water quality monitoring 
WG3: Effect-directed analysis for hazardous pollutants 
identification 
WG4: Nano-and micro scale particulate contaminants 
WG5: Water reuse and policy support 
WG6: Indoor environments and ambient air
WG7: Contaminants of emerging concern in soil and the 
terrestrial environment 
WG8: Marine 

Cross-Working Group Activity: Passive sampling
Cross-Working Group Activity: Non-target Screening (NTS) 

Working Group N°4: Nano- and micro-scale 
particulate contaminants 

https://www.norman-network.net/?q=Working%20Groups


NORMAN Database System
• Open access platform of interconnected databases 

(EMPODAT already synchronized with IPCHEM), 
implementing FAIR principles

• All modules connected via a unique identifier

• Not only monitoring data, but also  substance 
properties, ecotoxicity data, info to support 
identification of unknowns in HRMS spectra

• Harmonized protocol for data                     collection
and data reporting

• Paving the way for development of a new European 
infrastructure to handle data coming from innovative 
methods (e.g. NTS and effect-based methods) in line 
with the Green Deal objectives.

NORMAN Database System

Working Group N°4: Nano- and micro-scale 
particulate contaminants 

https://www.norman-network.com/nds/


NORMAN Annual Joint  Programme of Activities
https://www.norman-network.net

Annual Report of Activities and Financial Report approved by ALL members

Steering
Committee

Decides the strategy
and approves the 

annual joint 
programme of 

activities (budget)

General 
Assembly

Meeting

Nov -Dec
All proposals presented

and discussed

Call for 
proposals

July-
October

Each member can 
submit proposals

How NORMAN  works



The Project – PlasticTrace

The overall aim of PlasticTrace is to
develop international metrological
capacity that enables the traceable
measurement and characterisation of
small-micro plastics (SMPs; 100 – 0.1
µm) and nanoplastics (NPs; < 0.1 µm)
in environmental and food samples and
the production of suitable reference
materials, according to the metrological
requirements.
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Overview of PlasticTrace Work Plan



Working Group N°4: Nano- and micro-scale 
particulate contaminants 

Jes Vollertsen, Aalborg University:

“The role of FTIR spectral databases and quantification algorithms for microplastic 

identification – exemplified by the siMPle freeware”

Benedikt Hufnagl, Hufnagl Chemometrics GmbH:

“Using AI and large-scale spectral databases for polymer identification of microplastics”

Eric Ceglie, Empa:

“Software developments for particle detection and quantification based on FT-IR 

hyperspectral data”

Win Cowger, Open Specy: 

“Automated microplastic spectroscopy, biases, limitations, and opportunities”



“The role of FTIR spectral databases and quantification 
algorithms for microplastic identification 

– exemplified by the siMPle freeware

Jes Vollertsen
Professor of Environmental Engineering, Aalborg University, Denmark



Hunting for microplastics

YES – we found one



But did we find them all?
What if we looked deeper?



Trying to find them all – without cherry-picking



Sometimes you overlock particles when analyzing – false negatives



You cannot blindly trust your analytics – false positives



The journey from matrix to something your instrument can analyze

IR or Raman spectroscopy



To get from concentrate to IR-spectra

Collect samples in vial

Sample pre-treatment Deposit sample on 
slide, window or filter Scan it

Interpret

A good IR spectrum of what looks like zinc stearate

A medium quality spectrum of what likely is polypropylene



And out comes the data
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In the beginning we ‘clicked’ each particle



But we got very tired of that
Only part of the window could be analyzed 
(one whole window would take a month of work)
Human bias was far too large

Along came the first automated approach: 
Primpke et al., 2017, from Alfred Wegener Institute in Germany
 



First we build our own 
software, then integrated 
with the AWI approach 
into: siMPle 
(MP analysis for non-nerds?)

The art of 
data 
crunching

We typically scan an area of 10x10 mm at 
5.5 µm pixel resolution to create a map
= 3,211,264 individual spectra www.simple-plastics.eu/

http://www.simple-plastics.eu/
http://www.simple-plastics.eu/
http://www.simple-plastics.eu/


µFTIR imaging with automated analysis finds more microplastics

But it does not find them all !!!

Size of microplastics before and after a 
mesophilic anaerobic digestion

Chand et al. (in prep)



An example, a soil from a harbor
(sorry for the missing tiles)

Absorbance at 2000 cm-1 Filtering for correlation to one HDPE spectrum



Score: 0.48

Score: 0.76

This is probably a PE particle with a poor fit to raw spectrum and 1st derivate

This is a PE particle with a nice fit to raw spectrum and 1st derivate
This gets recognized as MP

This gets overlooked



Why do small particles get overlooked even by imaging?
Spectra are deteriorated due to aging of the material (can be considered by the choice of database)

Particles get so thin that the signal (peaks) are over-shadowed by noise (random fluctuations)

Probably we also loose small particles in the sample preparation and microplastics extraction

A signal-to-noise analysis And a correlation to a HDPE spectrum And detected microplastics



Heatmap – one 
tile only (0.7 mm)

Heatmap shown at 1735 cm-1



Using the AAU pipeline 
at quite conservative 
database thresholds
This pipeline does not allow 1-pixel 
particles

3 particles identified

Searching with a paint-focused 
database



Using the AAU pipeline 
at slightly more relaxed 
database thresholds

4 particles identified



Using the AAU pipeline 
at significantly more 
relaxed database 
thresholds

13 particles identified



Using the APA pipeline 
at quite relaxed 
database thresholds. 
This pipeline allows 1-pixel particles

26 particles identified



Finding a balance between false positives and 
false negatives – when is a match “good enough”



Finding a balance between false positives and 
false negatives – when is a match “good enough”



Finding a balance between false positives and 
false negatives – when is a match “good enough”



So, Let’s Get Going
(when the going get’s tough, and so on)



Using AI and large-scale spectral databases 
for polymer identification of microplastics

- a chemometric perspective on the problem
of creating data-agnostic software

for microplastics analysis

Dr. Benedikt Hufnagl



Agenda
Commonly used devices
microparticlesAI
What is machine learning?
Building data-agnostic approaches
Compare and Validate ML models



Commonly used devices in 
microspectroscopy



Commonly used devices for MP analysis
Microspectroscopy

Bruker Agilent PerkinElmer Thermofisher
Scientific

DRS Daylight
Solutions

Lumos II
Hyperion 3000 / II

Cary 620
Spotlight 400

Nicolet iN10 MX
Spero QT

FTIR (FPA) FTIR (Line Array)
Quantum 
Cascade 

Laser

Imaging Single Point

Dr. Benedikt Hufnagl



Commonly used devices for MP analysis
Microspectroscopy

All
OEMs

Photothermal 
Spectroscopy

Invia
LabRAM

mIRage

FTIR Raman
Quantum 
Cascade 

Laser

Imaging Single Point

Oxford 
WITec

Renishaw Horiba

alpha300 R

Agilent 

8700 LDIR

Dr. Benedikt Hufnagl



microparticlesAI



Dr. Benedikt Hufnagl

A complex development project

Interfaces

Classification

Auditing

Reporting



Dr. Benedikt Hufnagl

A complex development project

Interfaces

Classification

Auditing

Reporting

Bruker Lumos II
Hyperion 300
Hyperion II
Cary 620

Thermofisher
Perkin Elmer

Nicolet iN10 MX
Spotlight 400



Dr. Benedikt Hufnagl

A complex development project

Interfaces

Classification

Auditing

Reporting

Environment
Food and Beverages
Textiles



Dr. Benedikt Hufnagl

A complex development project

Interfaces

Classification

Auditing

Reporting

Visualization tools
QA/QC tools
Auditing tools



Dr. Benedikt Hufnagl

A complex development project

Interfaces

Classification

Auditing

Reporting
Sample statistics
Sample visualizations
Report generation



PerkinElmer

Thermofisher

Bruker

Agilent

Spotlight 400

Nicolet iN10 MX

Lumos II, Hyperion 3000

Cary 620

Dr. Benedikt Hufnagl

microparticlesAI



What is machine learning?



Dr. Benedikt Hufnagl

What is a classifier?

x f ŷ



PP

What is a classifier?

x f ŷ

Dr. Benedikt Hufnagl



PS

What is a classifier?

x f ŷ

Dr. Benedikt Hufnagl



PET

What is a classifier?

x f ŷ

Dr. Benedikt Hufnagl



What is model-based machine learning?

Dr. Benedikt Hufnagl



Dr. Benedikt Hufnagl

What is model-based machine learning?
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What is model-based machine learning?



Dr. Benedikt Hufnagl

What is model-based machine learning?



Dr. Benedikt Hufnagl

?

?

M.L. vs D.B. - what is the difference?
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?

?

M.L. vs D.B. - what is the difference?



Dr. Benedikt Hufnagl

What are the key implications?
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What are the key implications?



Dr. Benedikt Hufnagl

What are the key implications?



Dr. Benedikt Hufnagl

What are the key implications?

(+) speed
(+) accuracy
(+) scalability

(-) complex 
development 
process



Building data-agnostic 
approaches



Dr. Benedikt Hufnagl

Spectra of different origin
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Spectra of different origin
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Dr. Benedikt Hufnagl

A comparison of different models
ANN RF DB

T1
4760 spectra,
4 [1/cm]
silicon wafer

T2
1720 spectra,
8 [1/cm]
Anodisc

T3
6980 spectra,
4 [1/cm]
Anodisc



A comparison of different models

Dr. Benedikt Hufnagl

T1
4760 spectra,
4 [1/cm]
silicon wafer

T2
1720 spectra,
8 [1/cm]
Anodisc

T3
6980 spectra,
4 [1/cm]
Anodisc

PPRF PE PET PS



Dr. Benedikt Hufnagl

microparticlesAI (M-Engine)
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microparticlesAI (M-Engine)
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microparticlesAI (M-Engine)
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microparticlesAI (M-Engine)



Dr. Benedikt Hufnagl

microparticlesAI (M-Engine)



Compare and Validate
Machine Learning Models



Dr. Benedikt Hufnagl

Definitions vs. talking in terms of data



Dr. Benedikt Hufnagl

I consider FTIR spectra as polypropylene, 
which have a  shoulder at 2875 cm-1, and 
the asymmetric and symmetric in-plane C-
H (-CH3) at 1455 cm-1, as well as a 
shoulder at 1358 cm-1. There is also a 
peak at 1376 cm-1 which is assigned to 
the -CH3 group.

Considering scattering effects and total 
absorption the following effects will change 
the appearance of the spectrum:

…

Definitions vs. talking in terms of data



Dr. Benedikt Hufnagl

I consider FTIR spectra as polypropylene, 
which have a  shoulder at 2875 cm-1, and 
the asymmetric and symmetric in-plane C-
H (-CH3) at 1455 cm-1, as well as a 
shoulder at 1358 cm-1. There is also a 
peak at 1376 cm-1 which is assigned to 
the -CH3 group.

Considering scattering effects and total 
absorption the following effects will change 
the appearance of the spectrum:

…

These 100 FTIR spectra correspond to 
what I understand by polypropylene:

Definitions vs. talking in terms of data



Dr. Benedikt Hufnagl
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I consider FTIR spectra as polypropylene, 
which have a  shoulder at 2875 cm-1, and 
the asymmetric and symmetric in-plane C-
H (-CH3) at 1455 cm-1, as well as a 
shoulder at 1358 cm-1. There is also a 
peak at 1376 cm-1 which is assigned to 
the -CH3 group.

Considering scattering effects and total 
absorption the following effects will change 
the appearance of the spectrum:

…

These 100 FTIR spectra correspond to 
what I understand by polypropylene:

Definitions vs. talking in terms of data
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ISO 24187:2023 Evaluation / Validation

x y

PP

PS

PET
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ISO 24187:2023 Evaluation / Validation

x ŷy

PP PP

PS PS

PET PBT
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ISO 24187:2023 Evaluation / Validation
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ISO 24187:2023 Evaluation / Validation
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Dr. Benedikt Hufnagl

Validate (app) for ISO 24187 validation
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Validate (app) for ISO 24187 validation



Dr. Benedikt Hufnagl

Validate (app) for ISO 24187 validation



Dr. Benedikt Hufnagl (a,b)

(a) Austrian Delegate at ISO
(b) Hufnagl Chemometrics GmbH

contact info:
office@hufnagl-chemometrics.com



Software developments for particle 
detection and quantification based on 
FT-IR hyperspectral data

Eric Ceglie, Christoph Hüglin

Empa, Laboratory for Air Pollution and Environmental Technology

Ralf Kägi, Matthias Philipp

Eawag, Process Engineering Department



Surrogates Detection

Problem: We want to

count the surrogates



Ultralytics YOLO11 Models

• YOLO11 is collection of a cutting-edge 

pre-trained AI models for computer 

vision tasks.

• It includes models for detection, 

segmentation, classification, and more.

• Designed for efficiency, it achieves high 

accuracy with small training data sets.

• Versatile and scalable for research and 

real-world applications.

Currently, we are only

using these two.



How is it Licensed?

Ultralytics offers two licensing options for YOLO:

• AGPL-3.0 License: This open-source license is ideal for educational and non-commercial use, 

promoting open collaboration.

• Enterprise License: This is designed for commercial applications, allowing seamless 

integration of Ultralytics software into commercial products without the restrictions of the 

AGPL-3.0 license.

“Our licensing strategy is designed to ensure that any improvements to our open-source projects are returned to 

the community. We hold the principles of open source close to our hearts , and our mission is to guarantee 

that our contributions can be utilized and expanded upon in ways that are beneficial to all.”

[Source: https://docs.ultralytics.com/#yolo-a-brief-history]

https://docs.ultralytics.com/#yolo-a-brief-history


Surrogates Detection: Results



Surrogates Detection: Results



Surrogates Detection: Results



Fiber Detection: Results

Problem: We want to

detect fibers



Fiber Detection: Results

Problem: We want to

detect fibers



Fiber Detection: Results



Fiber Detection: Results



Fiber Detection: Results



Fiber Detection: Results



FTIR spectroscopy

Spectral Classification

Problem: Classify

Spectral Data of

microplastics samples

Polyamide (?)

PolyethylenePET (?)

Noise/Background



conv 1x11

conv 1x7

conv 1x5

Max-Pool 1x2

Max-Pool 1x2

flatten

fully connected

fully connected

Spectral Classification: Model Architecture (CNN)



Why should we use a CNN?



Why should we use a CNN?

Purency uses this
 (see [1], [2])

We use this

Results from Liu, Yanlong, et al. "Spectral classification of large-scale blended (Micro) plastics using 

FT-IR raw spectra and image-based machine learning." Environmental Science & Technology 57.16 (2023): 6656-6663.

[1] Hufnagl, Benedikt, et al. "A methodology for the 

fast identification and monitoring of microplastics in 

environmental samples using random decision forest 

classifiers." Analytical Methods 11.17 (2019): 2277-

2285.

[2] Hufnagl, Benedikt, et al. "Computer-assisted 

analysis of microplastics in environmental samples 

based on μFTIR imaging in combination with 

machine learning." Environmental science & 

technology letters 9.1 (2021): 90-95.



Spectral Classification: Building a Dataset (Reference 
Data)

• Each square shows a different material 

scanned with FT-IR spectroscopy 

(Agilent).

• Red areas are manually labeled for 

material (vs. background).

• Dataset includes common plastics (PE, 

PP, PS, etc.).

• Measurements by Matthias Philipp 

(Eawag).

• Used to train models for spectral 

classification.

• Hope: Building our own Dataset the 

training data is closer to real-world data.



Spectral Classification: Training



Spectral Classification: Confusion Matrix



Spectral Classification: First Results

our approach Purency



Spectral Classification: First Results

our approach Purency



Spectral Classification: First Results

our approach Purency



Spectral Classification: First Results

our approach Purency



Spectral Classification: First Results

Probability distribution

for classifications



Spectral Classification: Interpretability

• Goal: Understand how the model learns 
spectral features for material classification.

• Architecture: A 1D CNN processes input 
spectra through convolution layers.

• Feature Maps: Visualized at different 
convolutional layers (conv1–conv3) to 
visualize learned patterns.

• Interpretability: Helps identify which parts of 
the spectrum are important for classification 
decisions.



Spectral Classification: Interpretability

• Goal: Understand how the model learns 
spectral features for material classification.

• Architecture: A 1D CNN processes input 
spectra through convolution layers.

• Feature Maps: Visualized at different 
convolutional layers (conv1–conv3) to 
visualize learned patterns.

• Interpretability: Helps identify which parts of 
the spectrum are important for classification 
decisions.



Spectral Classification: Interpretability

Example: LDPE

Observation: Pattern fades away in 
deeper convolutional layers

→ Interpretation: This pattern is likely 
not relevant for the classification



Spectral Classification: Interpretability

Example: Noise



Spectral Classification: Interpretability

Example: PLA



Next Steps

• Improve/extend reference data set (better separation from 
background, include more samples)

• Improve model architecture based on feature maps
• Include spectral matching in Yamanaka software
• Write stand-alone software to easily run spectral matching

Acknowledgements: Thanks to the Swiss Federal Office for the Environments (FOEN) for funding
projects at Empa and Eawag on environmental microplastics.
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When I started microplastic spectral analysis

2



Classic spectral identification technique

3

Run a correlation between a known library spectra and unknown potential microplastic spectra

Known Unknown



4

The Dream

Primpke et al. 2020

We want automated 

spectroscopy to 

characterize 

microplastic shape, 

size, color, and polymer 

type. 



Before chemical analysis

How much should be 

characterized?

• It is recommended to 

analyze AT LEAST 100 

randomized suspected 

microplastics, Cowger et al. 

2024. Don’t use percentage-

based subsampling.



ATR is too slow! > 10 min per particle, IR Plate Readers may help

Transmission ReflectionATR

6k spectra collected of minerals, plastics, and organic materials
Sebastian Primpke



7

(FT)-IR plate reader challenges

Tire wear particles and thick particles have poor signal to 

noise



Databases can be 

inadequate if not 

built for purpose

Out of the Box 

Accuracy was OK 

for ATR but lower 

for Reflectance 

and Transmission. 

Cowger et al. 2024

Known Issues
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Testing Automated Hyperspectral Methods

1. Homogeneous particles on a surface.

2. Did this for 20 different materials. 



10

Testing 

Automated 

Methods

ID the median spectrum for each particle



Other Features

Overlay and 

extract 

average RGB 

colors

(255, 255, 0)



Other Features

Stitching maps, you 

may not be able to 

map everything in one 

map



Open Specy online can do almost all of this but may be slow on large 

maps.



We can run everything in the Open Specy package by just changing a 

single line of code. 

Zacharias Steinmetz



Current Metrics

1. Count Accuracy: 86%, RSD 34%

2. Identification Accuracy: 90%, RSD 24%

3. Size Accuracy: 94%, RSD 33%

4. Analysis Time: ~ 1 min for analyzing a 

100k spectral map. 

5. We are basically where we want to be 

but we must proceed cautiously.



Known Issues

Poor Signal Near 

Edges

Touching Particles 

Get Merged

Ruptured particles at 

poor signal regions

Particles can move 

between visual and 

infrared imaging



Known Issues

Inappropriate background, mesh size > step size, also the sample needs to be flat!



Challenges in identification

Weathering endows new 

spectral features

Phan et al. 2022

Mineral doped plastic has strong 

mineral signal

https://www.researchgate.net/publication/327803682_Functionalized_glass_fiber_
membrane_for_extraction_of_iodine_species/figures

Chamel and Maréchal (1992).

Natural and synthetic 

polyamides are very 

similar

https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2014.00305/full#B7
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Next Steps

● New AI algorithm in collaboration with Monash 

University to use 500k reference library we 

developed.

● A new package for batch analyzing maps.

● New functionality for nanoplastic (< 1um) 

measurement with Raman imaging and leachate 

analysis with A-TEEM. 
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Can We Achieve Consistent Results by 
Applying Similar Processing Steps?

1



The Question We Asked

Can narrowing the IR spectral range impact the accuracy of microplastics identification?

June 4, 2025 FTIR vs QCL-IR in Microplastics Characterization         DE-0072442

Optical designWavenumber range Sample introduction substrates Signal-to-noise ratio

Measurement mode Library selection Data processing methods

Since only a few aspects of testing variations can be controlled, such as sample introduction substrates, 

library selection, and data processing, an important question arises:



Identifying Microplastics Using IR Spectroscopy

June 4, 2025 FTIR vs QCL-IR in Microplastics Characterization         DE-0072443

1,260 to 1,087 cm−1 (CF2 

stretching vibrations)

1,800 to 1,740 cm−1 (C=O 

stretching vibrations) 

1,760 to 1,670 cm−1 (C=O 

stretching vibrations)

1,480 to 1,400 cm −1 (CH2 

bending vibrations) 

2,980 to 2,780 cm−1 

(stretching vibrations of 

CH/CH2/CH3 groups) 



Experimental Approach - Comparative Study of FTIR & LDIR Systems

June 4, 2025 FTIR vs QCL-IR in Microplastics Characterization         DE-0072444

Polymer 
samples

• PE
• PP

• PET
• PS

• PVC
• PA

• PU
• PMMA

• PTFE
• PC 

Identification 

• FTIR-ATR
• µFTIR 

imaging 
equipped 
with an FPA 
detector.

• QCL-IR

Data 
processing

• Exporting 
spectra

• Converting 
reflection 
data to 
absorbance

• Calculating 
the first 
derivative

Reference 
Library

•  siMPle 
library, 
containing 
326 ATR 
spectra of 
commonly 
encountered 
environmenta
l polymers

Matching 
algorithm

• Pearson's 
method (4 
ranges)

Cary 620 µFTIR imaging system 8700 LDIR Chemical Imaging SystemCary 630 FTIR-ATR



Cary 630 FTIR-ATR
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Polymer 650–3945 cm⁻¹ 950–3590 cm⁻¹ 1250–3590 cm⁻¹ 975–1800 cm⁻¹

PS 0.95
Polystyrene

0.78
Polystyrene

0.78
Polystyrene

0.84
Polystyrene

PE 0.81
Polyethylene_low_density

0.81
Polyethylene_low_density

0.81
Polyethylene_low_density

0.82
Polyethylene_low_density

PET 0.61
Poly(ethylene_terephthalate)

0.54
Poly(ethylene_terephthalate)

0.47
Fibre_polyester

0.62
Poly(ethylene_terephthalate)

PC 0.89
Polycarbonate

0.90
Polycarbonate

0.87
Polycarbonate

0.91
Polycarbonate

PVC 0.28
Poly(vinyl_chloride)_carboxylated

0.30
Polyvinylchloride_with_plasticizer

0.26
Polyvinylchloride_with_plasticizer

0.60
Polyvinylchloride_with_plasticizer

PP 0.79
Fibre_polypropylene_dyed

0.80
Fibre_polypropylene_dyed

0.80
Fibre_polypropylene_dyed

0.94
Fibre_polypropylene_dyed

PTFE 0.96
Poly(tetrafluoroethylene)

0.97
Poly(tetrafluoroethylene)

0.36
Poly(tetrafluoroethylene)

0.98
Poly(tetrafluoroethylene)

PA 0.51
Nylon_6_6

0.51
Nylon_6_6

0.50
Nylon_6_6

0.72
Nylon_6_6

PU 0.77
Polyurethane

0.78
Polyurethane

0.76
Polyurethane

0.82
Polyurethane

PMMA 0.85
Polymethyl methacrylate

0.86
Polymethyl methacrylate

0.83
Polymethyl methacrylate

0.88
Polymethyl methacrylate

Correlation <0.4 0.4 – 0.6 0.6 – 0.8 >0.8

• PTFE performs best at 975–1,800 cm⁻¹. 
• Fingerprint region improves correlation for PA, PP, and PVC. 

• PET and PS show highest correlation in both full and narrow ranges. 

• Minimal correlation variation for PMMA, PC, PE, and PU across all spectral ranges. 

All polymers were 

identified correctly 



Cary 620 µFTIR imaging system
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Polymer 650–3945 cm⁻¹ 950–3590 cm⁻¹ 1250–3590 cm⁻¹ 975–1800 cm⁻¹

PS 0.41
Polystyrene

0.80
Polystyrene_expanded

0.79
Polystyrene_expanded

0.84
Styrene_acrylonitrile

PE 0.41
Polyethylene_low_density

0.61
Polyethylene_low_density

0.63
Polyethylene_low_density

0.69
Polyethylene_foamed

PET 0.54
Polyethylene terephthalate

0.63
Polyethylene terephthalate

0.57
Polyethylene terephthalate

0.63
Polyethylene terephthalate

PC 0.37
Polycarbonate

0.55
Polycarbonate

0.60
Polycarbonate

0.58
Polycarbonate

PVC
0.17
Vinyl_chloride_vinyl_acetate_hydr
oxypropyl_acrylate

0.38
Vinyl_chloride_vinyl_acetate_hydrox
ypropyl_acrylate

0.38
Polyvinylchloride

0.47
Vinyl_chloride_vinyl_acetate_hydroxy
propyl_acrylate

PP 0.62
Polypropylene

0.71
Polypropylene

0.70
Fibre_polypropylene

0.88
Polypropylene

PTFE 0.14
Polytetrafluoroethylene

0.44
Polytetrafluoroethylene

0.37
Poly(tetrafluoroethylene)

0.67
Polytetrafluoroethylene

PA 0.43
Nylon_6_6

0.71
Nylon_6_6

0.71
Nylon_6_6

0.74
Nylon_6_6

PU 0.46
Alkyd_varnish

0.61
Alkyd_varnish

0.70
Alkyd_varnish

0.61
Alkyd_varnish

PMMA 0.31
Polymethyl methacrylate

0.38
Polymethyl methacrylate

0.36
Polymethyl methacrylate

0.39
Polymethyl methacrylate

Correlation <0.4 0.4 – 0.6 0.6 – 0.8 >0.8

• Full range shows lowest correlation due to low S/N at spectrum edges. 

• 975–1,800 cm⁻¹ improves correlation for PP and PTFE. 

• PA, PC, PE, PET, PMMA, PS, PU, and PVC show minimal variation across ranges.

All polymers were 

identified correctly 



8700 LDIR Chemical Imaging System
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Polymer 975–1800 cm⁻¹

PS 0.94
Polystyrene

PE 0.92
Polyethylene_low_density

PET 0.82
Polyethylene_terephthalate

PC 0.92
Polycarbonate

PVC 0.74
Polyvinylchloride

PP 0.96
Polypropylene

PTFE 0.63
Polytetrafluoroethylene

PA 0.90
Nylon_6_6

PU 0.75
Polyurethane

PMMA 0.73
Polymethyl methacrylate

Correlation <0.4 0.4 – 0.6 0.6 – 0.8 >0.8

Polymer 975–1800 cm⁻¹

PS 0.978
Polystyrene

PE 0.987
Polyethylene

PET 0.954
Polyethylene terephthalate

PC 0.953
Polycarbonate

PVC 0.878
Polyvinylchloride

PP 0.984
Polypropylene

PTFE 0.976
Polytetrafluoroethylene

PA 0.964
Polyamide

PU 0.943
Polyurethane

PMMA 0.952
Polymethyl methacrylate

Using Pearson's correlation, LDIR 

data accurately identified all polymers.

Microplastics Starter 2.1 library and Clarity 

software accurately identified all polymers. 
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Microplastics Analysis and the Infrared 

Spectrum: Is Spectral Range Selection Critical?
5994-8037EN

Navigating Global Microplastics Regulations in 

Drinking Water with Vibrational Spectroscopy
5994-8166EN

http://www.agilent.com/
https://www.agilent.com/cs/library/whitepaper/public/wp-microplastics-infrared-spectral-range-5994-8037en-agilent.pdf
https://www.agilent.com/cs/library/whitepaper/public/wp-microplastics-infrared-spectral-range-5994-8037en-agilent.pdf
https://www.agilent.com/cs/library/whitepaper/public/wp-microplastics-drinking-water-regulations-8700-ldir-5994-8166en-agilent.pdf
https://www.agilent.com/cs/library/whitepaper/public/wp-microplastics-drinking-water-regulations-8700-ldir-5994-8166en-agilent.pdf
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