EDITORIAL

Open Access

Check for updates

Let us empower the WFD to prevent risks of chemical pollution in European rivers and lakes

Werner Brack^{1,2*}, Selim Ait-Aissa³, Rolf Altenburger^{1,2}, Ian Cousins⁴, Valeria Dulio³, Beate Escher^{1,5}, Andreas Focks⁶, Antoni Ginebreda⁷, Daniel Hering⁸, Klára Hilscherová⁹, Juliane Hollender¹⁰, Henner Hollert², Andreas Kortenkamp¹¹, Miren López de Alda⁷, Leo Posthuma^{12,13}, Emma Schymanski¹⁴, Helmut Segner¹⁵ and Jaroslav Slobodnik¹⁶

Recently, the Guardian published an article entitled "EU clean water laws under attack from industry lobbyists" by Arthur Neslen (https://www.theguardian.com/envir onment/2019/may/15/eu-clean-water-laws-under-attac k-from-industry-lobbyists) expressing concerns regarding a roll back in European clean water regulations. As principal investigators of the large EU-funded project "SOLUTIONS for present and future emerging pollutants in land and water resources management", we appreciate such an open debate on water quality protection in Europe, which we would like to enrich with conclusions from 5 years of extensive research and stakeholder dialogue within SOLUTIONS and other large EU projects.

The European Water Framework Directive (WFD) is a unique piece of legislation dealing with the protection, monitoring and management of water quality which aims at achieving a good water status all over Europe by 2027. We appreciate this ambition, which we consider to be a milestone towards the well-being of European people and the protection of biodiversity and ecosystem functioning as well as an important step towards sustainable development in a non-toxic environment as projected by the European Commission.

Despite this ambition, the progress in achieving good ecological and chemical status according to the WFD appears to be limited. Good chemical status has not been

*Correspondence: werner.brack@ufz.de

¹ Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany

A debate about options for improvements to the WFD, including the current fitness check of EU water laws, is therefore timely and supported by SOLUTIONS scientists. This debate, however, should not solely focus on the "one-out-all-out" principle in defining good status

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Full list of author information is available at the end of the article

according to the WFD. It also needs to recognize that large numbers of chemicals from agriculture [5], industry [6, 7], households [8] and other sources are emitted in substantial quantities into European water resources, resulting in considerable impact [4, 9]. These emerge from both individual chemicals and, more importantly, from complex mixtures [10] compromising aquatic ecosystems and ecosystem services [11]. These mixtures and their associated risks are so far ignored by a chemical status that the WFD currently defines based on only 45 so-called priority substances, a miniscule fraction of more than 100,000 chemicals in commerce. Thus, on one hand, chemical status assessments currently underestimate toxic risks of mixtures substantially, and overlook hazardous chemicals that drive risks [12, 13]. This ignorance obscures the establishment of causal links between chemical and ecological status. On the other hand, the "one-out-all-out" principle [14] means that successful abatement which substantially reduces risks from new and emerging pollutants often remains unrewarded as long as individual legacy pollutants, defined as WFD priority substances, for which no management option is available, (e.g., mercury), exceed environmental quality standards. This situation prevents many possible improvements to the WFD chemical status.

SOLUTIONS suggests that this dilemma can only be solved by complementing the existing status assessments with more holistic protection from and monitoring, assessment and abatement of chemical pollution to address all chemicals that pose a risk, not just a handful of selected priority pollutants. It also requires assessing mixture effects and considering abatement options already at an early stage of the assessment. More differentiated assessments based on effects and risks of the entire mixture are suggested to create incentives for abatement even if the good status as it is defined currently is not achieved. This recommendation can be put into practice by implementing a set of efficient tools that have been developed and rigorously evaluated in large case studies within the 5 years of research in SOLUTIONS and other EU projects. These integrated tools include effect-based and chemical screening-based monitoring and assessment via whole mixture [15, 16] and component-based mixture assessment tools [17, 18], modelling tools to bridge data gaps, to assess continental scale risks and to assess future pollution scenarios [19, 20], and concepts to analyse the impact of chemical mixtures on the ecological quality [21]. Moreover, integrated approaches to estimate and prioritize chemical footprints of polluters can be considered with the aim to strengthen the "polluter pays" principle and to select abatement options [22]. These tools are fit for purpose and should be integrated in an updated WFD implementation strategy. They will substantially improve impact assessment and diagnosis and thus allow for the implementation of targeted and cost-effective abatement. At the same time, these tools will demonstrate improvement in water quality by successful mitigation measures (e.g., the upgrade of WWTPs in Switzerland [23, 24]) and increase the motivation for investments in water quality improvement and risk reduction. A series of policy briefs to be published in this Environmental Sciences Europe will provide further details.

To summarize, we should be aware that weakening the WFD as a legal instrument to protect European water resources may have severe impact on ecosystem services, biodiversity, on human well-being and sustainable development in Europe. Instead, the WFD deserves to be empowered to actually achieve its goals of protecting and establishing good water quality in European surface waters. The required concepts and tools to support this process are available.

Acknowledgements

The entire SOLUTIONS consortium is acknowledged for the excellent collaboration and fruitful discussions that prepared the ground for this editorial. SOLUTIONS: https://www.solutions-project.eu/.

Authors' contributions

WB conceptualised and drafted the manuscript. SA, RA, IC, VD, BE, AF, AG, DH, KH, JH, HH, AK, MLdA, LP, ES, HS, JS helped to elaborate the text and contributed specific issues. All authors read and approved the final manuscript.

Funding

This article has been prepared as an outcome of the SOLUTIONS project (European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 603437).

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany.² ABBt-Aachen Biology, Institute for Environmental Research, Department of Ecosystem Analysis, RWTH Aachen University, Aachen, Germany.³ Institut National de l'Environnement Industriel et des Risques (INERIS), 60550 Verneuil-en-Halatte, France.⁴ Stockholm University, Stockholm, Sweden.⁵ Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72074 Tübingen, Germany. ⁶ Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands. ⁷ Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.⁸ Centre for Water and Environmental Research and Faculty of Biology, University of Duisburg-Essen (UDE), 45141 Essen, Germany.⁹ Faculty of Science, Masaryk University, RECETOX, Kamenice 753/5, Brno 625 00, Czech Republic. ¹⁰ Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland. ¹¹ Institute of Environment, Health and Societies, Brunel University, Uxbridge UB8 3PH, UK.¹² National Institute for Public Health and Environment RIVM, Bilthoven, The Netherlands.¹³ Department of Environmental Science, Radboud University, Nijmegen, The Netherlands.¹⁴ Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367 Belvaux, Luxembourg.¹⁵ University of Bern, Bern, Switzerland.¹⁶ Environmental Institute, Koš, Slovak Republic.

Received: 1 July 2019 Accepted: 1 July 2019 Published online: 07 August 2019

References

- 1. Umweltbundesamt Die Wasserrahmenrichtlinie (2016) Deutschlands Gewässer 2015. Dessau, Bonn
- Tousova Z et al (2017) European demonstration program on the effectbased and chemical identification and monitoring of organic pollutants in European surface waters. Sci Total Environ 601:1849–1868
- 3. Beketov MA et al (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci USA 110(27):11039–11043
- 4. Malaj E et al (2014) Organic chemicals jeopardise freshwater ecosystems health on the continental scale. Proc Natl Acad Sci 111(26):9549–9554
- Moschet C et al (2014) How a complete pesticide screening changes the assessment of surface water quality. Environ Sci Technol 48(10):5423–5432
- van Wezel AP et al (2018) Impact of industrial waste water treatment plants on Dutch surface waters and drinking water sources. Sci Total Environ 640:1489–1499
- Muz M et al (2017) Identification of Mutagenic Aromatic Amines in River Samples with Industrial Wastewater Impact. Environ Sci Technol 51(8):4681–4688
- Loos R et al (2013) EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res 47(17):6475–6487
- 9. Muenze R et al (2017) Pesticides from wastewater treatment plant effluents affect invertebrate communities. Sci Total Environ 599:387–399
- Altenburger R et al (2018) Mixture effects in samples of multiple contaminants—an inter-laboratory study with manifold bioassays. Environ Int 114:95–106
- 11. Peters K, Bundschuh M, Schafer RB (2013) Review on the effects of toxicants on freshwater ecosystem functions. Environ Pollut 180:324–329
- 12. Neale PA et al (2017) Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams. Sci Total Environ 576:785–795

- König M et al (2017) Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis. Environ Pollut 220(Part B):1220–1230
- 14. European Parliament. 2015. http://www.europarl.europa.eu/doceo/ document/E-8-2015-008966-ASW_EN.html. Accessed 6 May 2019
- Brack W et al (2019) Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environ Sci Eur 31(1):10
- Brack W et al (2018) Towards a holistic and solution-oriented monitoring of chemical status of European water bodies: how to support the EU strategy for a non-toxic environment? Environ Sci Eur. https://doi. org/10.1186/s12302-018-0161-1
- Munz NA et al (2017) Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. Water Res 110:366–377
- Massei R et al (2018) Screening of pesticide and biocide patterns as risk drivers in sediments of major european river mouths: ubiquitous or river basin-specific contamination? Environ Sci Technol 52(4):2251–2260
- Lindim C, van Gils J, Cousins IT (2016) A large-scale model for simulating the fate and transport of organic contaminants in river basins. Chemosphere 144:803–810
- 20. Posthuma L et al (2019) Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12,386 chemicals. Environ Toxicol Chem 38(4):905–917
- 21. Altenburger R et al (2019) Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environ Sci Eur 31:12
- 22. Zijp MC, Posthuma L, van de Meent D (2014) Definition and applications of a versatile chemical pollution footprint methodology. Environ Sci Technol 48(18):10588–10597
- 23. Tlili A et al (2019) Tolerance patterns in stream biofilms link complex chemical pollution to ecological impacts. Environ Sci Technol (in press)
- 24. Eggen RIL et al (2014) Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol 48(14):7683–7689

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com