

Endocrine disruption in freshwater crustaceans. The case of the amphipod *Gammarus fossarum* exposed to an insect juvenile hormone

H. Arambourou^a, A. Chaumot^a, N. Delorme^a, K. Abbaci^a, E. Vulliet^b, G. Daniele^b, V. Debat^c

a: Irstea Lyon b: Institut des Sciences analytiques, CNRS, Lyon c: Museum National d'Histoire Naturelle (MNHN)

French Ec2co program – CNRS-INSU

Endocrine disruption in ecotoxicology: a humancentred approach

- Numerous studies have tested effects of mammal ED in arthropods;
- However throughout the evolution some genes of nuclear hormone receptors were lost and became independent of hormone regulation;
 - Mammal ED could have little effects on arthropods
 - It is necessary to consider the specificity of arthropod hormone regulation to better assess the effects of ED

Schematic phylogeny of metazoans, plants, fungi, and choanoflegellates (Escria et al. 2004)

Endocrine regulated functions in crustaceans

- Major role in endocrine regulation of two hormones: ecdysteroids and methyl farnesoate
- Implicated in:
 - - Morphogenesis

- Reproduction

Development and morphogenesis

The phenotype results from the interplay between sources of variations and regulating processes which are under endocrine regulation

Morphogenesis

irstea

translate into an increase of phenotypic defects

Morphogenesis

Phenotypic defects in *Gammarus fossarum* exposed to fenoxycarb as embryo

→ Exposure to fenoxycarb, a growth regulator insecticide, analog of the juvenile hormone
→ 0, 0.5 µg.L⁻¹, 5 µg.L⁻¹ and 50 µg.L⁻¹
→ Throughout the embryogenesis

Phenotype measurement in newborn individuals of exposed embryos

1. Eye pigmentation

2. Fluctuating asymmetry and interindividual variance of the antenna and the gnathopode (secondary sexual characteristic)

3. Midgut tissue damages

Morphogenesis

Phenotypic defects in *Gammarus fossarum* exposed to fenoxycarb as embryo

- → Exposure to fenoxycarb, growth regulator insecticide, analog of the juvenile hormone;
- → 5 μg.L⁻¹
- \rightarrow During gastrulation or organogenesis or hatching

Effects of fenoxycarb exposure on female reproduction

Oocytes

Females exposed throughout the oogenesis to fenoxycarb (50 µg.L⁻¹)

- 1. Pairing success
- 2. Fertilization success
- 3. Number of embryos
- 4. Viability of the embryos
- 5. Lipid content

Conclusions

- 1. Fenoxycarb interfers with embryogenesis
 - Pigmentation disruption as a biomarker of endocrine disruptor exposure ?
- 2. Early developmental stages of the embryogenesis are more sensitive
- 3. Few effects on developmental homeostasis
- 4. Effects were more pronounced on the reproduction
 - Protective role of the chorion during embryogenesis ?
 - Impairment of exoskeleton states ?
 - Impairment of chemical signaling ?
 - Disruption of lipid metabolism

Lipid metabolism under endocrine regulation → Lipidomic analysis of both females and newborn individuals of exposed embryos... in progress (CSIC-IDAEA, Spain, Carlos Barata)

