RPLC/HILIC/API-MS: polarity extended analysis for organic molecules in water bodies

Sylvia Grosse and Thomas Letzel

Analytical Research Group
Chair of Urban Water Systems Engineering
Technical University of Munich

Ixia, Rhodes, 1st September, 2015
content

- polarity extension RPLC with HILIC
- HILIC retention mechanisms:
 - adsorption
 - distribution (water layer)
 - electrostatic interaction
- stationary phases and mobile phases in HILIC
- serial HILIC-RP-MS coupling
- application
- conclusion
Why polarity extension?

Polar and nonpolar molecules

Partition coefficient (P):
$$\log P = \log \frac{[\text{solute}]_{\text{oct}}}{[\text{solute}]_{\text{wat}}}$$

Distribution coefficient (D):
$$\log D = \log \frac{[\text{solute}]_{\text{oct}}}{([\text{solute}]_{\text{wat}}^{\text{ionized}} + [\text{solute}]_{\text{wat}}^{\text{neutral}})}$$

Hydrophilic compounds

Hydrophobic compounds

Log $P < 0$

or

Log $D < 0$

Log $P > 0$

or

Log $D > 0$
Separation of polar and nonpolar compounds

HILIC
hydrophobic interaction liquid chromatography

RPLC
Reversed phase liquid chromatography

NP stationary phases
RP eluents

Typical mobile phase

ACN/H₂O

H₂O/ACN

RPLC vs. HILIC:
• Orthogonal
• Use of the same solvents
• MS compatible
Retention mechanisms

Analyte - Stationary Phase

- ✓ Hydrogen bonding
- ✓ Dipole - Dipole
Retention mechanisms

DISTRIBUTION

Retaining mechanisms:
- At least 2-3% water are essential in the mobile phase!

Retention mechanisms

ELECTROSTATIC INTERACTION

Electrostatic attraction

- 90% ACN
- Water layer
- Charged stationary phase

Electrostatic repulsion

- 90% ACN
- Water layer
- Charged stationary phase
Stationary Phases

HILIC stationary phases

Unmodified bare silica gels

Polar chemically bonded phases

Silica

Diol, Amide, Cross-linked diol

Aminopropyl

Sulfobetaine

Greco und Letzel, www.sepscience.com HILIC Solutions #3

Guillarme, HILIC: a critical evaluation, 2014
Stationary Phase: neutral

<table>
<thead>
<tr>
<th></th>
<th>Distribution</th>
<th>Electrostatic interaction</th>
<th>Adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amide</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Diol</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Cross-linked Diol</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

Stationary Phase: ionic

Aminopropyl

\(\text{NH}_3^+ \)

Silica

\(\text{Si} - \text{O}^- \)

\(\text{Si} - \text{OH} \)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Electrostatic interaction</th>
<th>Adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Anion exchange</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH < 4/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH > 4/5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cation exchange</td>
</tr>
</tbody>
</table>

Stationary Phase: zwitterionic

Sulfo betaine (ZIC-HILIC)

- Phosphorylcholine (ZIC-cHILIC)

Orthogonality RPLC and HILIC
RPLC-HILIC coupling

C18 Poroshell
(50 x 3.0, 2.7μm)

Reversed Phase

0.05 mL/min

100%

NH₄OAc 10 mM + 10% ACN

Eluent A

0%

ACN + 10% NH₄OAc 10 mM

Eluent B

ZIC-HILIC
(150 x 2.1, 5μm)

HILIC Phase

0.40 mL/min

100%

100%

100%

0%

ACN

Eluent A

H₂O

Eluent B

Reference solution

Eluent C

0.05 mL/min

RP gradient

Time (min)

B %

0 20 40 60 80 100

0 10 20

HILIC gradient

Time (min)

B %

0 20 40 60 80 100

0 10 20

(ToF)-MS detection
Polarity Extension

No HILIC

Serial coupling of HILIC and reversed phase liquid chromatography

Reversed phase liquid chromatography

RPLC

HILIC

RPLC
HILIC-RPLC application I: Amino acids

1 Phe; 2 Leu; 3 Trp; 4 Ile; 5 Val; 6 Tyr; 7 Pro; 8 Thr; 9 Ala; 10 Asn
HILIC-RPLC application II: pharmaceuticals and neurotransmitter

Gabapentin

Betaine

Vigabatrin
HILIC-RPLC application II: pharmaceuticals and neurotransmitter

gamma aminobutyric acid? Acetylcholine?
HILIC-RPLC application II: pharmaceuticals and neurotransmitter

gamma-Aminobutyric acid
Standard
ratio Quan/Qual: 3.6

gamma-Aminobutyric acid
real sample
ratio Quan/Qual: 4.1
HILIC-RPLC application II: pharmaceuticals and neurotransmitter

Acetylcholine
Standard
ratio Quan/Qual: 8.9

Acetylcholine
real sample
ratio Quan/Qual: 4.2

X

X

EPI Fragment Spectra
HILIC-RPLC application III: Sweetener and industrial chemicals, herbicide

- Cyanuric acid
- Acesulfam
- Isopentylamine
- Glyphosate
HILIC-RPLC application IV: An Oxidation Scenario with Diclofenac

Diclofenac (DCF)

- COOH
- NH
- Cl

BDD electrode

- MilliQ water
- Synthetic hard water
- Real wastewater effluent

Sample collection: 0-60 min

HILIC-RPLC application IV: Diclofenac oxidation

Literature proposed transformation products

HILIC-RPLC application IV: Diclofenac oxidation

HILIC-RPLC application IV: Diclofenac oxidation

Organic transformation products

Inorganic compounds

Counts vs. Acquisition Time (min)
conclusion

- Understanding of HILIC mechanisms
- HILIC valid with logD value < 0

- extended polarity with serial RPLC-HILIC coupling
- Combination of different chromatographic techniques in just one technique (RP, GC, IC)

A new field of molecules is tapped and will give a lot more interesting results
Thanks...

Funding:
This work was partially financed by the German Federal Ministry of Education and Research within the RiSKWa program, funding code 02WRS1354A.
Thanks...

And for your attention...

Any questions???