“Old”, “New” and “Novel” Flame Retardants in the Environment - Analytical Methods and Levels

Sicco Brandsma, Jacob de Boer, Pim Leonards
Outlines

• “Old” Brominated flame retardants
 • PBDEs, BDE209, TBBP-A and HBCD

• “New” Brominated flame retardants
 • BDBPE, DBDPE, TBB, TBPH and PBT

• “Alternative” Flame retardants
 • PFRs

• “Novel” Flame retardants
 • European research project ENFIRO
“New” brominated flame retardants

DBDPE (decabromodiphenylethane)

BTBPE (1,2 bis(2,4,6-tribromophenoxy)ethane)

TBPH (bis-2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate)

TBB (2-ethylhexyl-2,3,4,5-tertabromobenzoate)
Analytical methods for “New” BFRs

- Analytical methods described in literature for different matrices

 - Dust ➔ Stapleton et al. (2008), Ali et al. (2011)
 - Air ➔ Sjordin et al. (2001), Takigami et al. (2009)
 - Sediment ➔ Hoh et al. (2005), Lopez et al. (2011)
 - S. sludge ➔ Kierkegaard et al. (2004), Ricklund et al. (2008)
 - Wastewater ➔ Klosterhause et al. (2008), Zhou et al. (2010)
 - Biota ➔ Law et al. (2006), Luo et al. (2009)
 - Blood ➔ Karlsson et al. (2007)
Extraction of “New” BFRs

• Different extraction methods
 • Soxhlet
 • ASE
 • Ultrasonic extraction
 • SPE

• Wide range of solvent mixtures
 • Petroleum ether
 • Toluene
 • Dichloromethane
 • Hexane
 • Acetone
Cleanup methods for “new” BFRs

• Cleanup methods for abiotic and biotic samples
 • Sulphuric washing
 • Deactivated or sulphuric acid impregnated silica column
 • Florisil column
 • SPE cartridges
 • Alumina column
 • Sulphur removal (activated copper, AgNO3 on silica, TBA reagents and GPC)
Critical parameters for “new” BFRs

- Sulphuric acid treatment can only be used for DBDPE
- Non-destructive cleanup methods needed for BDBPE, TBB and TBPH
- TBA reagents may caused debromination of DBDPE
- DBDPE, TBB and TBPH undergo photodegradation
- Difficulties encountered in the analysis of DecaBDE are also expected for DBDPE
 - Poorly soluble in organic solvent
 - Higher boiling point than DecaBDE
 - Thermally degrades to mainly bromotoluenes
 - Blank problems
Instrumental analysis for DBDPE, BDBPE

- LR-ECNI-MS monitoring m/z 79/81 for DBDPE and 79/81 and 250.8/252.8 for BDBPE

- HR-EI-MS m/z 969/971 for DBDPE m/z 685/687 for BDBPE

- LR-ECNI-MS more sensitive than HR-EI-MS less specific

- Labeled DBDPE could not be used as IS for LR-ECNI-MS

- 13C BDE 209 used as alternative for LR-ECNI-MS

- DBDPE degrades on the GC column use column <15 meter
GC-ECNI-MS chromatogram of DBDPE, BDBPE

Sediment sample of the Western Scheldt
TBB was quantified using ion fragment (m/z) 357 (Quant) and 471 (Qual)

TBPH was quantified using ion fragments (m/z) 463 (Quant) and 515 (Qual)
GC-ECNI-MS chromatograms revealing the relative retention times of the primary BDE congeners, TBB and TBPH on a 15 m DB5-MS column.
LC-MS/MS

- LC-APPI-MS/MS in negative mode developed by Abdallah et al. (2009) for analyzing 14 PBDEs in house dust
- LC-MS/MS (APPI/APCI) in negative mode was also used by Zhou et al. (2010) to measure the “new” BFRs in combination with the PBDEs HBCD and TBBP-A

Advantages

- no thermal degradation
- use of 13C labeled standards
- Measuring all compounds in one run
 - no column changes

Disadvantages

- Less sensitive then GC-ECNI-MS

<table>
<thead>
<tr>
<th></th>
<th>GC/LR-ECNI-MS</th>
<th>LC-MS/MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD</td>
<td>30 fg - 1.7 pg*</td>
<td>12 - 30 pg*</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>+ +</td>
<td>- -</td>
</tr>
<tr>
<td>Selectivity</td>
<td>No</td>
<td>yes</td>
</tr>
<tr>
<td>Labeled standards</td>
<td>No (only for BDE209)</td>
<td>yes</td>
</tr>
<tr>
<td>Thermal degradation</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Expensive</td>
<td>+ -</td>
<td>+</td>
</tr>
<tr>
<td>Expert training</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Library search</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

*Eljarrat et al. (2002)
*Abdallah et al. (2009)
J Mass Spectrom 37: 76-84
Anal. Chem., 81, 7460–7467
Levels in the environment (I)

<table>
<thead>
<tr>
<th>Matrix</th>
<th>DBDPE concentrations</th>
<th>Range DBDPE</th>
<th>BTBPE concentrations</th>
<th>Range BTBPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1916 pg/m³ (Shi et al., 2009), 1–22 pg/m³ (Venier and Hites, 2008) up to 120 pg/m³ (Hoh and Hites, 2005)</td>
<td>1–1916 pg/m³</td>
<td>0.1–10 pg/m³ (Hoh and Hites, 2005)</td>
<td>0.1–30.7 pg/m³</td>
</tr>
<tr>
<td>Air (e-waste)</td>
<td>0.6–77 ng/m³ (Kierkegaard et al., 2004) 7 ng/m³ (Karlsson et al., 2006a,b)</td>
<td>0.7–77 ng/m³</td>
<td><0.6–39 ng/m³ (Pettersson-Juulander et al., 2004) 5.6–67 ng/m³ (Sjödin et al., 2001)</td>
<td>5.6–67 ng/m³</td>
</tr>
<tr>
<td>Dust</td>
<td>Average 47 µg/kg in Swedish house dust (Karlsson et al., 2007) Average 270, 170, and 400 µg/kg in UK homes, offices, and cars respectively (Harrad et al., 2008) <10 to 11070 µg/kg dw, median 201 µg/kg dw (Stapleton et al., 2008). 353 µg/kg dw (Sawal et al., 2008)</td>
<td><10 to 11070 µg/kg dw</td>
<td>Average 4.8 µg/kg in Swedish house dust (Karlsson et al., 2007) Average 120, 7.2, and 7.7 µg/kg in UK homes, offices, and cars respectively (Harrad et al., 2008) 1060 µg/kg dw (Sawal et al., 2008) 1.6–789 µg/kg dw (Stapleton et al., 2008)</td>
<td>4.8–1060 µg/kg dw</td>
</tr>
<tr>
<td>Dust e-waste</td>
<td><1.2–50 µg/kg dw (Shi et al., 2009)</td>
<td><2.50 to 139 µg/kg dw</td>
<td>14.6 to 232 µg/kg (median 107 µg/kg)</td>
<td>14.6–232 µg/kg dw (Shi et al., 2009).</td>
</tr>
<tr>
<td>Sewage sludge</td>
<td>100 µg/kg dw (Kierkegaard et al., 2004) 266 to 1995 (median 1183) µg/kg dw (Shi et al., 2009). DBDPE range 57–220 µg/kg dw (mean 81 µg/kg dw Europe, 31 µg/kg dw North America); ratio DBDPE/BDE-209 = 0.008–0.83 (Ricklund et al., 2008a,b) DBDPE digested sludge 66–95 µg/kg dw (mean 81 µg/kg dw), BDE-209 digested sludge 650–1100 µg/kg dw (mean 800 µg/kg dw) (Ricklund et al. 2008)</td>
<td>266 to 1995 µg/kg dw</td>
<td>0.31 to 1.66 µg/kg dw (Shi et al., 2009).</td>
<td>0.31–1.66 µg/kg dw</td>
</tr>
<tr>
<td>Sediment</td>
<td>24 µg/kg dw (Kierkegaard et al., 2004) 38.8 to 364 µg/kg (mean 247) µg/kg dw (Shi et al., 2009).</td>
<td>24–364 µg/kg dw</td>
<td>0.05 to 2.07 µg/kg dw (Shi et al., 2009)</td>
<td>0.05–6.7 µg/kg dw</td>
</tr>
<tr>
<td>Soil</td>
<td>28.1 µg/kg dry wt (Shi et al., 2009).</td>
<td>28.1 µg/kg dw</td>
<td>0.05 µg/kg dw (Shi et al., 2009).</td>
<td>0.05 µg/kg dw</td>
</tr>
<tr>
<td>Birds</td>
<td>Muscle: 9.6–16.3 µg/kg dw (mean 12.7), Liver: 13.7–54.6 µg/kg dw (mean 34.4), Kidney: 24.5–124 µg/kg dw (mean 64.5) (Shi et al., 2009) ND to 1.7 µg/kg lw (Gao et al., 2009). Range 4–800 µg/kg lw in various tissues (Luo et al., 2009)</td>
<td>ND–800 µg/kg lw</td>
<td>Muscle: 0.07–0.39 µg/kg dw (median 0.19), Liver: 0.27–2.41 µg/kg dw (median 1.23), Kidney: 0.12–0.89 µg/kg dw (median 0.45) (Shi et al., 2009)</td>
<td>0.05–2.41 µg/kg dw</td>
</tr>
<tr>
<td>Fish</td>
<td><0.03–3.7 µg/kg lw (K. Law et al., 2006)</td>
<td><0.03 to 3.7 µg/kg lw</td>
<td>0.01 µg/kg (Karls et al., 2006a,b)</td>
<td>0.01–0.96 µg/kg</td>
</tr>
<tr>
<td>Bird egg</td>
<td>1.3 to 288 µg/kg ww (Gauthier et al., 2007)</td>
<td>1.3 to 288 µg/kg ww</td>
<td>0.11 µg/kg (Karls et al., 2006a,b)</td>
<td>0.11–0.96 µg/kg</td>
</tr>
<tr>
<td>Tree bark</td>
<td>ND to 0.73 µg/kg dw (Qiu and Hites, 2008; Zhu and Hites, 2006)</td>
<td>ND to 0.73 µg/kg dw</td>
<td>0.96 µg/kg lw in egg yolk (Verreaux et al., 2007)</td>
<td>0.96 µg/kg</td>
</tr>
<tr>
<td>Panda tissue</td>
<td>ND to 863 µg/kg lw (Hu et al., 2008).</td>
<td>ND to 863 µg/kg lw</td>
<td>ND to 863 µg/kg lw</td>
<td>101 µg/kg</td>
</tr>
<tr>
<td>Children's toys</td>
<td>5540 µg/kg (Chen et al., 2009)</td>
<td>5540 µg/kg</td>
<td>101 µg/kg (Chen et al., 2009)</td>
<td>101 µg/kg</td>
</tr>
</tbody>
</table>

Covaci et al., (2011) Environ. Internat. 37, 532–556
Levels in the environment (II)

- PBB and TBPH
- TBPH and TBB sewage sludge of WWTP San Francisco, US (Klosterhaus et al. 2008)
 - TBB: 40 to 1412 ng/g dw
 - TBPH: 57 to 515 ng/g dw
 - In the same ranges or higher than HBCD and decaBDE

- In finless porpoises from Hong Kong and China (Lam et al. 2009)
 - TBB: <0.4 -70 ng/g lw
 - TBPH: <0.04-3859 ng/g lw

- In house dust from Boston, US (Stapleton et al. 2008)
 - TBB: <6.6 to 15,030 ng/g (median 133 ng/g)
 - TBPH:1.5 to 10,630 ng/g (median 142 ng/g)
Conclusions

- GC-ECNI-MS sensitive method to measure BDBPE, DBDPE, TBB and TBPH
- The ‘new’ BFRs can be analyzed in the same run as PBDEs
- GC column < 15 meter (degradation of DBDPE)
- Use of non-destructive cleanup methods is needed (no acids)
- Combine cleanup with PBDEs
- LC-MS/MS in APPI/APCI mode good alternative
- Detected in the environment (limited data)
More “new” BFRs

- Determination of new brominated flame retardants and PBDEs in sediment and SPM from the Western Scheldt (Lopez et al. 2011)

<table>
<thead>
<tr>
<th>Molecular structure</th>
<th>Compound</th>
<th>Molecular structure</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pentabromochlorocyclohexane (PBCH) (isomers A, B, C and D) CAS [87-84-3]</td>
<td></td>
<td>2,3,4,5,6-Tetra-iodo-p-xylene (pTIX) CAS [24388-38-2]</td>
</tr>
<tr>
<td>Br Cl</td>
<td>MW = 513.09</td>
<td>Br</td>
<td>MW = 421.75</td>
</tr>
<tr>
<td>Br Br</td>
<td>$S_{\text{water}} = 0.055 \text{ mg/L}$</td>
<td>Br Br</td>
<td>$S_{\text{water}} = 0.000935 \text{ mg/L}$</td>
</tr>
<tr>
<td>Br Br</td>
<td>$\log P_{\text{octanol-water}} = 4.72$</td>
<td>Br Br</td>
<td>$\log P_{\text{octanol-water}} = 6.99$</td>
</tr>
<tr>
<td>Br Cl</td>
<td></td>
<td>Tetra-iodo-4-chlorotoluene (TIX) CAS [39569-21-6] MW = 422.19</td>
<td>2,3,4,5,6-Pentabromotoluene (PBT) CAS [87-83-2] MW = 486.62</td>
</tr>
<tr>
<td>Br</td>
<td>$S_{\text{water}} = 0.016 \text{ mg/L}$</td>
<td>Br</td>
<td>$S_{\text{water}} = 0.0000935 \text{ mg/L}$</td>
</tr>
<tr>
<td>Br Cl</td>
<td>$\log P_{\text{octanol-water}} = 5.63$</td>
<td>Br</td>
<td>$\log P_{\text{octanol-water}} = 6.99$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetra-iodo-tetrahydrophthalic anhydride (TBPhA) CAS [632-79-1] MW = 463.7</td>
<td></td>
<td>Tris(2,3-dibromopropyl) phosphate (TBP) CAS [126-72-7]</td>
</tr>
<tr>
<td>Br Cl O</td>
<td>$S_{\text{water}} = 0.016 \text{ mg/L}$</td>
<td>Br Br</td>
<td>MW = 697.64</td>
</tr>
<tr>
<td>Br Br</td>
<td>$\log P_{\text{octanol-water}} = 5.63$</td>
<td>Br</td>
<td>$S_{\text{water}} = 0.0000935 \text{ mg/L}$</td>
</tr>
<tr>
<td>Br Cl O</td>
<td></td>
<td>Br</td>
<td>$\log P_{\text{octanol-water}} = 6.99$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) CAS [37853-59-1] MW = 687.64</td>
<td></td>
<td>Decabromodiphenyl ethane (DBDPE) CAS [84852-53-9] MW = 971.1</td>
</tr>
<tr>
<td>Br Br</td>
<td>$S_{\text{water}} = 0.2 \text{ mg/L}$</td>
<td>Br Br</td>
<td>$S_{\text{water}} = 0.00072 \text{ mg/L}$</td>
</tr>
<tr>
<td>Br Br</td>
<td>$\log P_{\text{octanol-water}} = 9.15$</td>
<td>Br Br</td>
<td>$\log P_{\text{octanol-water}} = 11$</td>
</tr>
</tbody>
</table>
Cleanup method

- Quantification was conducted by IS. 13C BDE209 was used for octa-, nona-, and decaBDE and DBDPE. BDE58 and 13C BDBPE was used for the other BFRs.

- PBCCH, TBoCT, pTBX, PBT, TBPhA, TBDPP and BTBPE were analysed together with the PBDEs on a 50 m column.

- DBDPE was analysed in the same run as octa-, nona-BDEs and BDE209 on a short column to avoid on-column degradation.
Spatial distribution sediment
Concentrations in sediment (ng/g dw)

Upstream Scheldt estuary

- Wielingen
- Terneuzen
- Hansweert
- Oude doel

Chemicals:
- BDE209
- DBDPE
- BDE47
- PBCCH D
- BDBPE
- PBT
- TBoCT
- PBCCH A
- pTBX
Results and Conclusions

• Analytical procedure to determine PBCCH, TBoCT, pTBX, TBPhA, PBT, BDBPE, and DBDPE together with PBDEs in sediments and in suspended particulate matter

• First identification of PBCCH, pTBX and TBoCT in sediment and SPM

• The concentrations of these new flame retardants ranged from 0.05 to 0.30 µg/kg dry weight
Organophosphorus Flame Retardants (PFRs)
Introduction

• Phase-out production and use of PBDEs
• Increased use of alternative FRs (e.g. PFRs)
• Worldwide production volume of FRs
 • 14% PFRs compared to 21% for BFRs*
• Detected in various matrices e.g. water, air sediment
• Limited information on PFRs in biota

*(www.cefic/efra.com)
Objectives

• Determination of PFRs in the pelagic and benthic food web of the Western Scheldt
PFRs

- TiBP
- TBP
- TCEP
- TCPP
- TDCPP
- TBEP
- TPP
- TEHP
- TCP
- DBPhP
- DPhBP
Cleanup

Fat retaining
Matrix: 250 mg of fish oil

Fat retaining

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AI Ox GPC Silica SPE HLB SPE PPT SPE NH2

Fat retaining

18-125% 86-115% 75-120% 48-238% 10-164% 68-128%

Recovery
PFRs

No cyclic Too much matrix Too much matrix Poor recovery No cyclic Best solution

Summary
PFRs in Belgian home dust (n=33) µg/g

<table>
<thead>
<tr>
<th>FRs</th>
<th>DF (%)</th>
<th>Mean</th>
<th>Median</th>
<th>P95</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPFRs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEP</td>
<td>0</td>
<td><0.05</td>
<td><0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiBP</td>
<td>100</td>
<td>4.20</td>
<td>2.99</td>
<td>8.81</td>
<td>0.70–15.6</td>
</tr>
<tr>
<td>TnBP</td>
<td>100</td>
<td>0.25</td>
<td>0.13</td>
<td>0.63</td>
<td>0.03–2.70</td>
</tr>
<tr>
<td>TCEP</td>
<td>86</td>
<td>0.49</td>
<td>0.23</td>
<td>1.72</td>
<td><0.08–2.65</td>
</tr>
<tr>
<td>TCPP</td>
<td>100</td>
<td>4.82</td>
<td>1.38</td>
<td>14.5</td>
<td>0.19–73.7</td>
</tr>
<tr>
<td>TBEP</td>
<td>100</td>
<td>6.58</td>
<td>2.03</td>
<td>23.1</td>
<td>0.36–67.6</td>
</tr>
<tr>
<td>TPP</td>
<td>100</td>
<td>2.02</td>
<td>0.50</td>
<td>7.28</td>
<td>0.04–29.8</td>
</tr>
<tr>
<td>TDCPP</td>
<td>97</td>
<td>0.57</td>
<td>0.36</td>
<td>0.99</td>
<td><0.08–6.64</td>
</tr>
<tr>
<td>TCP</td>
<td>97</td>
<td>0.44</td>
<td>0.24</td>
<td>1.10</td>
<td><0.04–5.07</td>
</tr>
<tr>
<td>ΣOPFRs</td>
<td>19.4</td>
<td>13.1</td>
<td>70.3</td>
<td></td>
<td>1.92–94.7</td>
</tr>
</tbody>
</table>

BFRs					
BDE-209	98	0.59	0.31	0.92	<0.001–5.30
ΣPBDEs	0.70	0.36	1.14		0.003–6.33
ΣHBCDs	1.74	0.13	2.46		0.010–42.70
TBBPA	85	0.04	0.01	0.09	0.002–0.42

Life Cycle and Risk Assessment of Environmental Compatible Flame Retardants
Prototypical case study

ENFIRO

EU research project FP7: 226563
Objectives ENFIRO

• To study the substitution options for some BFRs

• ENFIRO delivers:
 • Comprehensive dataset on the viability of production, application
 • Risk assessment
 • Life cycle assessment (LCA)
Work plan

Prioritization and Selection

Hazard Characterisation

Exposure, fate, model.

FR Capability studies

Application studies

Risk assessment
- Environmental
- Public Health
- Occupational Health

Impact assessment studies

Dissemination
ENFIRO: HFFRs for screening study

Inorganic FRs (n=7)

$$\text{Zn}^{2+} \quad \begin{array}{c}
\text{Sn} \\
\text{O} \\
\text{O} \\
\end{array} \quad \text{OH} \quad \text{OH}$$

Organophosphorus & salt FRs (n=5)

$$\begin{array}{c}
\text{P} \\
\text{O} \\
\end{array}$$

Nitrogen based organic FR (n=1)

$$\begin{array}{c}
\text{NH}_2 \\
\text{H}_2\text{N} \\
\text{N} \\
\text{N} \\
\text{N} \\
\text{NH}_2 \\
\end{array} \quad \left[\begin{array}{c}
\text{O} \\
\text{P} \quad \text{O} \\
\text{OH} \quad \text{OH} \\
\end{array} \right]_n$$

Intumescent systems (n=2)

Nanoclay (n=1)
Three level assessments

FR
Risk assessment
- Environment
- Human health

Material
Technological assessment
- Application
- Fire performance
- Leaching behaviour

Product
Impact assessment studies
- Life cycle assessment
- Life cycle costing
- Social life cycle assessment
Assessment of FR/polymer material

- Leaching FR to air (off-gassing)
- Leaching FR to water (concentrations and toxicity)
- Toxic gasses after fire tests
- Weathering
AlPi leaching from PBT pellets and moulded plates

DIN 383414
Al and P leaching from PBT pellets (PG3)

DIN 38414
Al and P leaching from PBT pellets (PG4)

TCLP
Al and P leaching from PBT pellets (PG3)

TCLP
Al and P leaching from PBT pellets (PG4)
Final conclusion

- New BFRs can be analysed by LC versus GC \(\rightarrow \) Both
- Alternative flame retardant \(\rightarrow \) only brominated or include PFRs
- What if we only use metal based FRs like ATH \(\rightarrow \) problem solved?

Source: SRI Consulting 2005 and 2008
Acknowledgement

ENFIRO funded by the EU (226563)