

Schweizerisches Zentrum für angewandte Ökotoxikologie Centre Suisse d'écotoxicologie appliquée Eawag-EPFL

The Combined Algae Assay - A Promising Tool for Water Quality Assessment

Cornelia Kienle, Etienne Vermeirssen, and Inge Werner

Amsterdam, 11.-12.4.2017

Too much pesticide on Swiss strawberries, says report

22/06/2016 BY LE NEWS

Laboratory analysis of conventionally grown strawberries picked from strawberry farms in Thurgau and Bern's Seeland region, along with samples from Switzerland's supermarkets, shows they contain high levels of pollution.

Problematic pesticide levels in Swiss streams

By Susan Misicka

SWI swissinfo.ch

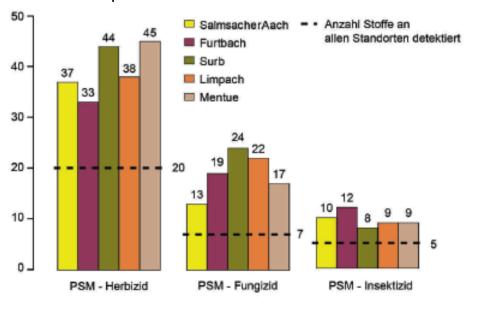
AQUA & GAS Nº

HOHE ÖKOTOXIKOLOGISCHE RISIKEN IN BÄCHEN

NAWA SPEZ UNTERSUCHT BÄCHE IN GEBIETEN MIT INTENSIVER LANDWIRTSCHAFTLICHER NUTZUNG

Overview

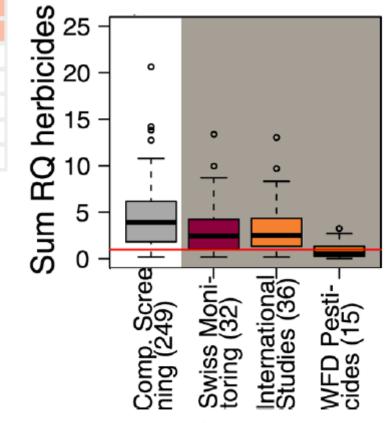
- Why a combined algae assay?
- Overview on the test system
 - How is the assay performed?
 - What are the measurement parameters
 - Comparison to other standardised algae assays
- Performance of the combined algae assay
 - What is the variability of the assay?
 - Examples for dose-response curves
- Examples for projects
 - International studies
 - Ozonation test procedure
 - Module Ecotoxicology / EcoImpact
- Summary and Outlook



Why a combined algae assay?

Pesticides in Swiss Streams

- Project NAWA SPEZ 2012
- 5 mid-sized streams in CH
- Diverse land use (e.g. wheat, fruits, vine)
- 5 regions (TG, ZH, AG, SO, VD)
- 2-week composite samples
- 300 active ingredients (plant protection products and biocides)


Number of detected herbicides, fungicides and insecticides per site

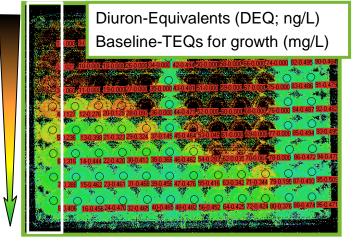
Herbicides in Swiss Streams

Name	Detektionshäufigkeit (Anteil Nachweise > 5ng/l)	Maximale Konzentration (ng/l)	Anzahl Über- schreitungen des CQK	Anzahl Standorte mit Nachweis der Substanz
S-Metolachlor	98%	960	9	5
Terbuthylazin	62%	630	6	5
Isoproturon	67%	350	1	5
Diuron	60%	52	13	5
Flufenacet	44%	290	3	5
CMI	9%	510	2	2
Prosulfocarb	44%	690	1	4
Cyprodinil	38%	330	1	4
Linuron	38%	270	1	4
Dicamba	20%	1400	1	3

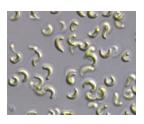
Why a Combined Algae Assay?

- Six PSII inhibiting herbicides included as priority substances under EU WFD
- **Environmental Quality standards:**
 - available and applied as regulatory tool in EU WFD
 - will soon be included in Swiss Water Protection Ordinance
- **PSII inhibitors** frequently applied and **present at environmentally** relevant concentrations in (Swiss) surface waters.
- Specific action on primary producers:
 - Direct effects on photosynthesis
 - Indirect effects on growth and organisms' capability of coping with multiple stressors.

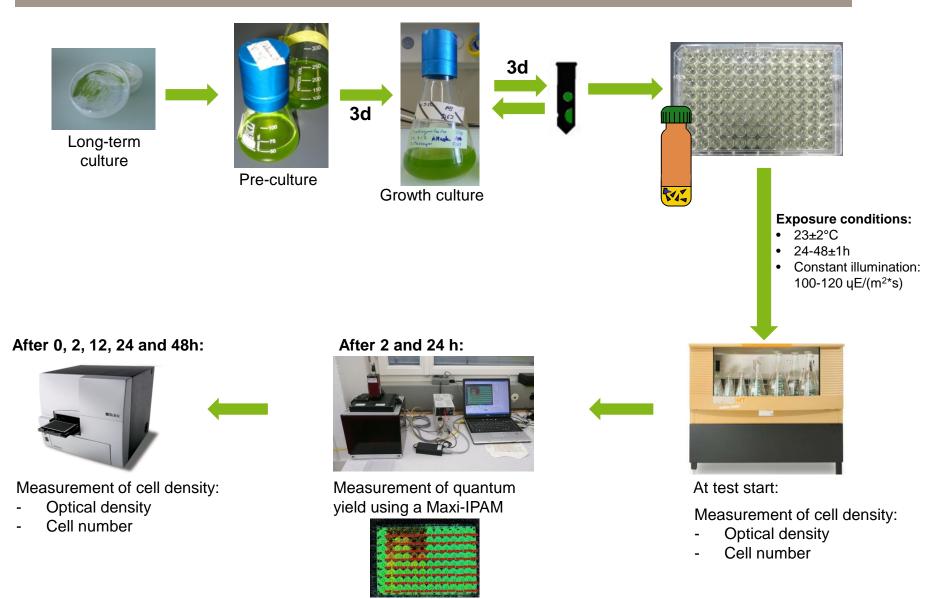
Combined Algae assay as promising tool to measure these effects


Overview on the test system

Combined Algae Assay (Escher et al., 2008, JEM 10)


- Test organism: single cell freshwater green algae (Pseudokirchneriella subcapitata)
- Test principle:

Detection of effects on


- 1) photosynthesis (2h)
- 2) growth of algae (24h)
- Endpoints: Inhibition of photosynthesis-, growth (%)
- Toxicity parameters: ECx, Diuronequivalent-concentration (DEQ), Baseline-toxicity-equivalentconcentration (baseline-TEQ)

Diuron

How is the Combined Algae Assay Performed?

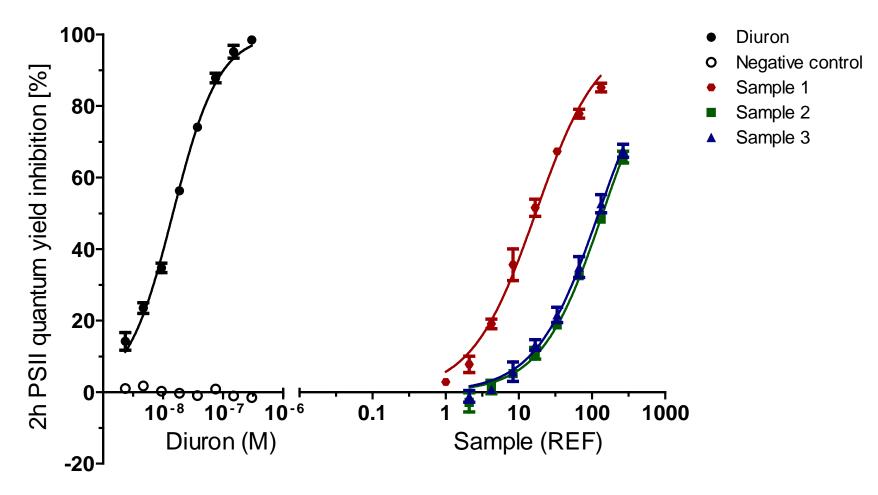
Measurement of PS II Inhibition

Maxi-Imaging-Pulse-Amplitude-Modulation (Maxi-IPAM)

- Fluorescence excitation by
 - Pulse-modulated measurement light (no or very little photosynthetic activity)
 - Actinic light (photosynthetic activity)
 - **Saturation pulses** (complete closure of all PSII-reaction centers)
- Photosystem II inhibiting herbicides (e.g. diuron):
 - Lead to a strong increase in fluorescent yield
 - Excitation energy (normally converted to chemical energy) → emitted as fluorescence,
 - Fluorescence \rightarrow can be measured with a high sensitivity,
 - Excitation of chlorophyll fluorescence reacts on a high number of compounds acting on the photosynthesis.

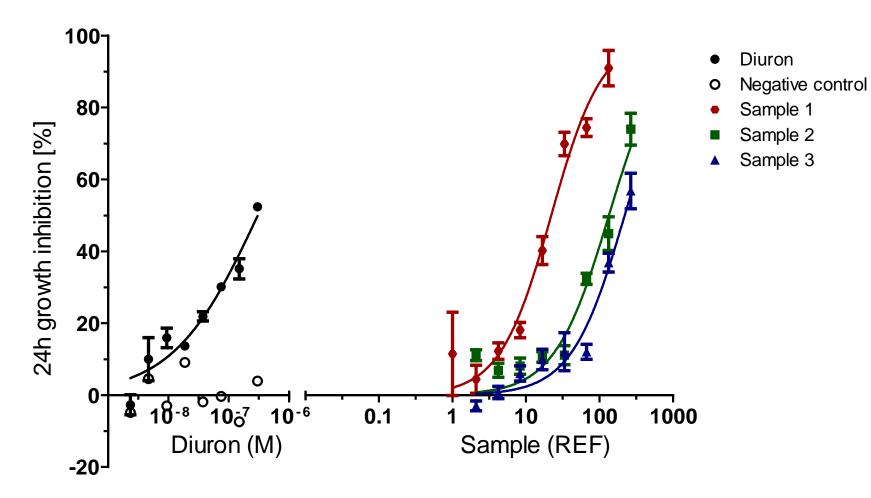
Walz, 2012

Performance of the assay

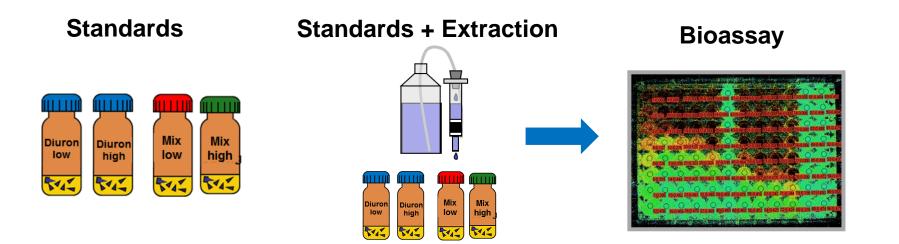

Test Parameters of the Combined Algae Assay

In comparison to standardized algae assays

Assay	Starting cell density / ml	Reference compound(s)
ISO	5*10 ³ - 10 ⁴	3,5-DCP, K ₂ Cr ₂ O ₇
OECD	5*10 ³ - 10 ⁴	3,5-DCP, K ₂ Cr ₂ O ₇
Environment Canada	ca. 10 ⁴	Phenol, ZnSO ₄ , CuSO ₄
Combined algae assay (48h, Altenburger medium)	ca. 1*10 ⁵	Diuron
Combined algae assay (24h, Talaquil medium)	ca. 2*10 ⁵	Diuron


Dose Response Curves

PSII-Inhibition (2h)


Dose Response Curves

Growth (24h)

Validation of the Combined Algae Assay at the Ecotox Centre

- Preparation of reconstituted environmental samples with environmentally relevant concentrations of PSII inhibitors (diuron or mixture of diuron, isoproturone, terbutryne and terbutylazine):
 - Representing WWTP effluent → Diuron_{high} / Mix_{high}: 500 ng DEQ/L
 - Representing surface water \rightarrow Diuron_{low} / Mix_{low}: 50 ng DEQ/L

Validation of the Combined Algae Assay: Summary

- Detection limits enable measurement of samples below the chronic environmental quality standard for Diuron (70 ng/L in CH, 200 ng/L in EU) (with sample enrichment by solid phase extraction (SPE)).
- Recovery: in mixtures with low and high PSII inhibitor concentrations between 81 and 102%
- Bioassay variability: between 5 and 11%
- Variability of bioassay and SPE: between 7 and 17%
- Recovery in spiked environmental sample: between 99 and 125%

Bioassay results correspond to requirements for chemical analysis

Combined algae assay can be applied for water quality evaluation of wastewater and polluted surface waters.

Project Examples

Examples for application of the assay

Available online at www.sciencedirect.com

<u>BIOSENSORS</u> Bioelectronics

Biosensors and Bioelectronics 22 (2007) 2554-2563

www.elsevier.com/locate/bios

Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging Ulrich Schreiber^a, Pamela Quayle^b, Sven Schmidt^c, Beate I. Escher^d, Jochen F. Mueller^{b,*}

Toxic pressure in the Dutch delta measured with bioassays

Trends over the years 2000-2009

Report 607013013/2010 J. Struijs | E. van der Grinten | T. Aldenberg National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Science of the Total Environment 576 (2017) 785-795

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams

Peta A. Neale^{a,b,1}, Nicole A. Munz^{c,d,1}, Selim Aït-Aïssa^e, Rolf Altenburger^f, François Brion^e, Wibke Busch^f, Beate I. Escher^{a,b,f}g.*, Klára Hilscherová^h, Cornelia Kienleⁱ, Jiří Novák^h, Thomas-Benjamin Seiler^j, Ying Shao^j, Christian Stamm^c, Juliane Hollender^{c,d}

PAPER

www.rsc.org/jem | Journal of Environmental Monitoring

Monitoring of the ecotoxicological hazard potential by polar organic micropollutants in sewage treatment plants and surface waters using a mode-of-action based test battery \dagger ;

Beate I. Escher, *a Nadine Bramaz, Pamela Quayle, ab Sibylle Rutishauser ab and Etiënne L. M. Vermeirssen

Received 18th January 2008, Accepted 4th April 2008 First published as an Advance Article on the web 16th April 2008 DOI: 10.1039/b800951a

Article pubs.acs.org/est

Identification of Photosynthesis Inhibitors of Pelagic Marine Algae Using 96-Well Plate Microfractionation for Enhanced Throughput in Effect-Directed Analysis

Petra Booij,^{*,†} A. Dick Vethaak,^{†,§} Pim E. G. Leonards,[†] Sascha B. Sjollema,[‡] Jeroen Kool,^{\parallel} Pim de Voogt,^{‡,⊥} and Marja H. Lamoree[†]

Available online at www.sciencedirect.com

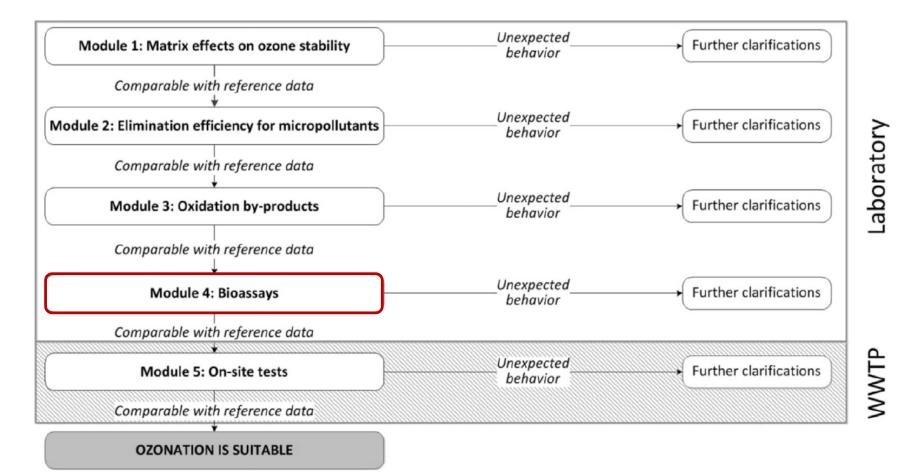
Biosensors and Bioelectronics 21 (2006) 2086-2093

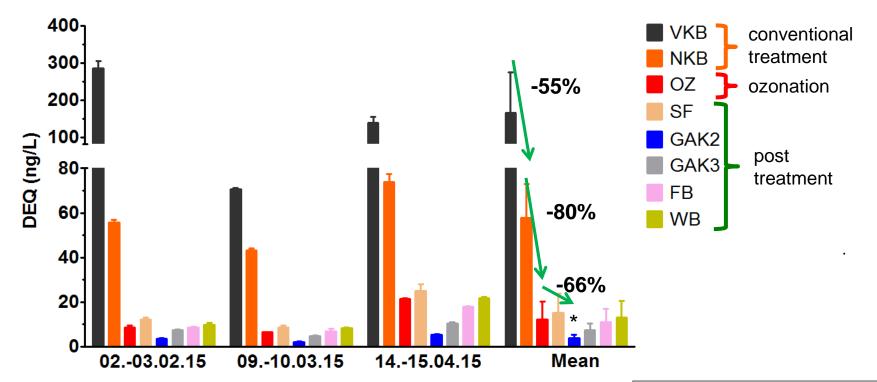
www.elsevier.com/locate/bios

Phytotoxicity of surface waters of the Thames and Brisbane River Estuaries: A combined chemical analysis and bioassay approach for the comparison of two systems

S.M. Bengtson Nash^{a,*}, J. Goddard^b, J.F. Müller^a

^a The National Research Centre for Environmental Toxicology (EnTOX), The University of Queensland (UQ), Coopers Plains, Qld, Australia ^b The UK Environment Agency, South East Area, Thames Region, Surrey GU16 7SQ, UK


> Received 10 August 2005; received in revised form 6 October 2005; accepted 25 October 2005 Available online 28 November 2005



Evaluation of Advanced Wastewater Treatment

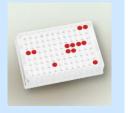
Novel test procedure to evaluate the treatability of wastewater with ozone

ReTREAT: Algae Test – Photosynthesis Inhibition

- Considerable decrease of toxicity after biological treatment (NKB) and ozonation (Oz)
- GAK2 shows a significant difference between post treatments (-66%)
- Overall elimination 89 97%

VKB:	mechanical treatment
NKB:	secondary clarifier/biological
	treatment
OZ:	ozonation
SF:	sand filtration
GAK2:	granulated activated carbon
	(fresh)
GAK3:	granulated activated carbon
	(preloaded)
FB:	fixed bed
TFB/WB:	turbulent fluidized bed

Kienle et al., 2017, Ecotox Centre report



A Bioassay-Based Evaluation Concept

High % wastewater in the waterbody

Effect-based screening of wastewater

Effect concentrations in the water body

Ecotoxicological assessment of contamination

Evaluation		Compliance with quality criterion / trigger value	
	very good	nanad	
	good	passed	
	moderate		
	insufficient	exceeded	
	poor		

M

۵

Kienle et al. 2015, Ecotox Centre Report

Water quality assessment

based on risk assessment procedures

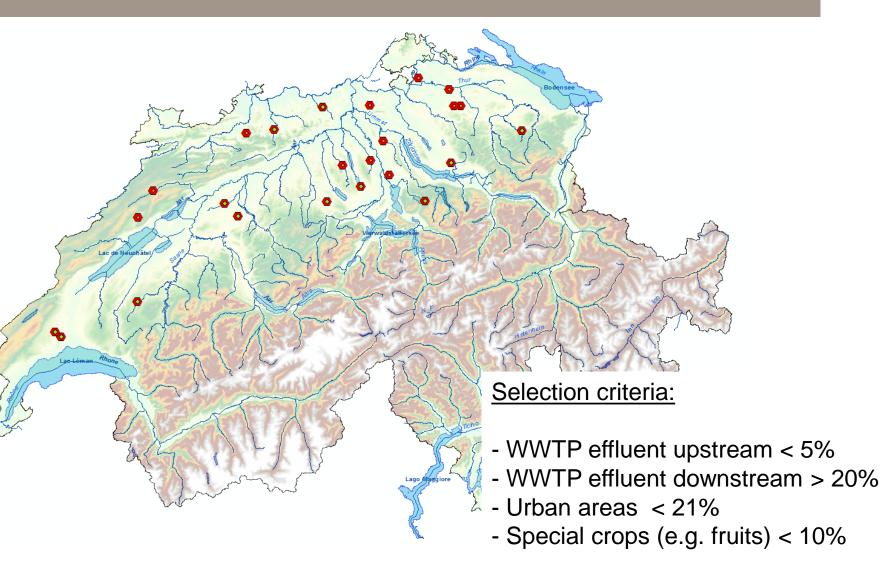
Risk quotient (**RQ**) = $\frac{BEQ}{EQS}$ = <1 Trigger value passed</p>
>1 Trigger value exceeded

>1 Trigger value exceeded

With: **BEQ** = Bioanalytical equivalent concentration **EQS** = Environmental quality standard

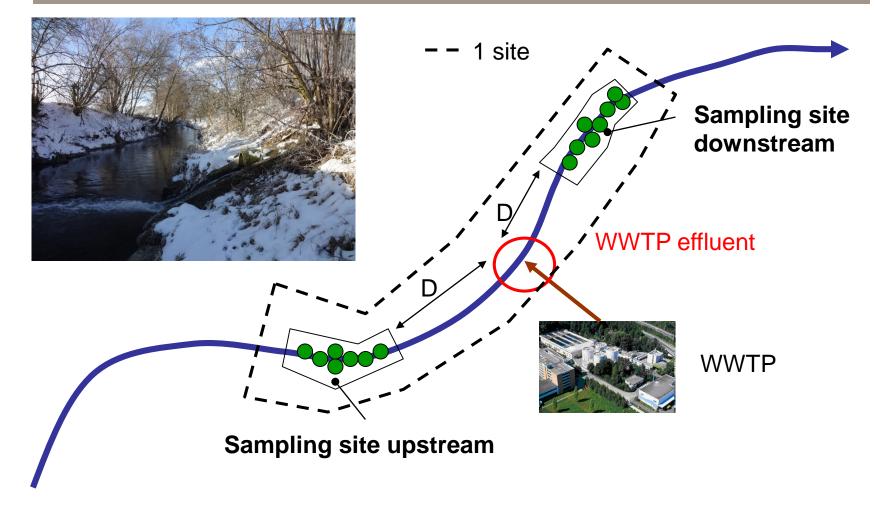
Applied chronic EQS proposal for the evaluation:

Photosystem II-inhibiting effects: EQS for Diuron = 70 ng/L

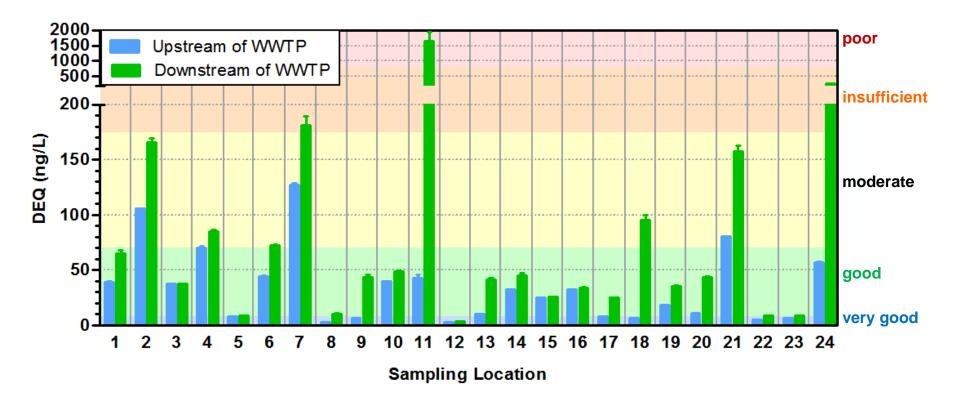

Ecotoxicological Assessment of the Results

Suggestion for an evaluation scheme in 5 classes

Eval	uation	Criterion/de	escription		Compliance with quality criterion / trigger value
	very good		DEQ <	7 ng/L	passed
	good	7 ng/L	≤ DEQ <	70 ng/L	passed
	moderate	70 ng/L	≤ DEQ <	175 ng/L	
	insufficient	175 ng/L	≤ DEQ <	700 ng/L	exceeded
	poor		DEQ ≥	700 ng/L	



Case study: Photosystem II-inhibiting effects in Swiss WWTP effluents and streams (Project EcoImpact)


Ecolmpact: Sampling sites in the rivers

Distance D: a dozen up to a few 100 m (dependent on mixture conditions)

Combined Algae Assay – Results Photosynthesis Inhibition

→ Diuron EQS exceedance upstream in 3 of 24 sampling locations and downstream in 8 of 24 sites

DEQ = Diuron-Äquivalenz-Konzentration

Algae Assay: Correlation DEQs from Bioassay and Chemical Analysis

21 WWTP effluents sampled with passive samplers

DEQ_{chem} based on concentrations of measured PSII inhibitors (using LC-MS/MS):

- Atrazine
- Diuron
- Irgarol
- Isoproturon
- Terbutryn
- Terbuthylazin

Conc. summed up taking into account their respective relative potencies

Summary and Conclusions

Possibilities

- Combined algae assay enables measurement of several relevant endpoints,
- Specific effects of PSII inhibitors and growth inhibition can be detected with a single assay,
- Test duration of 24-48 h shorter as for already standardised assays (e.g. ISO, OECD),
- Use of 96-well-plate enables measurement of higher numbers of samples and/or dilution steps.

Summary and Conclusions

Points to address

- Optimisation of growth endpoint needed
- Adjustment of cell density to enable exponential growth over 48 h

Aim: ISO standardisation of the assay

Would you be interested?

Bengtson Nash SM, Goddard J, Muller JF, 2006. Phytotoxicity of surface waters of the Thames and Brisbane River estuaries: a combined chemical analysis and bioassay approach for the comparison of two systems. Biosensors & bioelectronics 21:2086-2093.

Booij P, Sjollema SB, van der Geest HG, Leonards PEG, Lamoree MH, de Voogt WP, Admiraal W, Laane RWPM, Vethaak AD, 2015. Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters. J Sea Res 102:48-56.

Cosgrove J, Borowitzka MA, 2010. *Chlorophyll Fluorescence Terminology: An Introduction.* In: Suggett DJ, Prášil O, Borowitzka MA, editors. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications: Springer Netherlands. p. 1-17.

Escher BI, Allinson M, Altenburger R, Bain PA, Balaguer P, Busch W, Crago J, Denslow ND, Dopp E, Hilscherova K, Humpage AR, Kumar A, Grimaldi M, Jayasinghe BS, Jarosova B, Jia A, Makarov S, Maruya KA, Medvedev A, Mehinto AC, Mendez JE, Poulsen A, Prochazka E, Richard J, Schifferli A, Schlenk D, Scholz S, Shiraishi F, Snyder S, Su G, Tang JY, van der Burg B, van der Linden SC, Werner I, Westerheide SD, Wong CK, Yang M, Yeung BH, Zhang X, Leusch FD, 2014. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ Sci Technol 48:1940-1956.

Escher BI, Quayle P, Muller R, Schreiber U, Mueller JF, 2006. Passive sampling of herbicides combined with effect analysis in algae using a novel high-throughput phytotoxicity assay (Maxi-Imaging-PAM). Journal of Environmental Monitoring 8:456-464.

Escher BI, Bramaz N, Mueller JF, Quayle P, Rutishauser S, Vermeirssen ELM, 2008a. *Toxic equivalent concentrations (TEQs) for baseline toxicity and specific modes of action as a tool to improve interpretation of ecotoxicity testing of environmental samples.* Journal of Environmental Monitoring 10:612-621.

Gauch, R, 2012: Does measuring cell number inhibition improve the combined algae assay. Master Thesis, ETH Zürich.

Kienle C, Kase R, Werner I, 2011. Evaluation of Bioassays and Wastewater Quality - In vitro and in vivo Bioassays for the Performance Review in the Project "Strategy Micropoll". Swiss Centre for Applied Ecotoxicology, Eawag-EPFL, Dübendorf.

Kienle C, Langer M, Ganser B, Gut S, Schifferli A, Thiemann C, Vermeirssen E, Werner I, 2017. Biologische Nachbehandlung von kommunalem Abwasser nach Ozonung – ReTREAT: Teilprojekt Biotests. Studie im Auftrag des Bundesamtes für Umwelt (BAFU). . Schweizerisches Zentrum für angewandte Ökotoxikologie Eawag-EPFL, Dübendorf.

Kienle C, Singer H, Vermeirssen E, Stamm C, Werner I: Effects of Micropollutants from Wastewater Treatment Plants on Stream Ecosystems: spatial patterns of ecotoxicological bioassays in 24 Swiss Rivers. In preparation.

Kienle C, Vermeirssen E, Kunz PY, Werner I, 2015. Grobbeurteilung der Wasserqualität von abwasserbelasteten Gewässern anhand von ökotoxikologischen Biotests. Studie im Auftrag des BAFU Schweizerisches Zentrum für angewandte Ökotoxikologie, Eawag-EPFL, Dübendorf.

Moschet C, Wittmer I, Simovic J, Junghans M, Piazzoli A, Singer H, Stamm C, Leu C, Hollender J, 2014. How a Complete Pesticide Screening Changes the Assessment of Surface Water Quality. Environmental Science & Technology 48:5423-5432.

Neale PA, Munz NA, Aït-Aïssa S, Altenburger R, Brion F, Busch W, Escher BI, Hilscherova K, Kienle C, Novak J, Seiler TB, Shao Y, Stamm C, Hollender J, 2017. Integrating chemical analysis and bioanalysis to evaluate the contribution of wastewater effluent on the micropollutant burden in small streams. The Science of the total environment 576:785-795.

Ralph PJ, Smith RA, Macinnis-Ng CMO, Seery CR, 2007. Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems: Review. Toxicological & Environmental Chemistry 89:589-607.

Schreiber U, Quayle P, Schmidt S, Escher BI, Mueller JF, 2007. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosensors and Bioelectronics 22:2554-2563.

Schindler Wildhaber Y, Mestankova H, Schärer M, Schirmer K, Salhi E, von Gunten U, **2015.** Novel test procedure to evaluate the treatability of wastewater with ozone. Water Res 75:324-335.

Struijs J, van der Grinten E, Aldenberg T, 2010. Toxic pressure in the Dutch delta measured with bioassays : Trends over the years 2000 - 2009. Rijksinstituut voor Volksgezondheid en Milieu RIVM.

Vermeirssen EL, Hollender J, Bramaz N, Van Der Voet J, Escher BI, 2010. Linking toxicity in algal and bacterial assays with chemical analysis in passive samplers deployed in 21 treated sewage effluents. Environmental Toxicology and Chemistry 29:2575-2582.