IVM Institute for Environmental Studies

Sara Tufi

HILIC coupled to mass spectrometry for targeted and nontargeted metabolomics

Marja Lamoree

Why metabolomics for environmental quality assessment?

Limitations of (in vitro) bioassays:

- > Focus on one specific endpoint
- > Limited sensitivity

Metabolomics

- Focus on multiple endpoints (metabolites or sets of metabolites) simultaneously
- Includes *in-vivo* metabolism

Metabolomics

Aim: study sub-lethal neurotoxic effects in non-target invertebrate species

- Non-targeted metabolomics: method development to investigate changes in (non-target) hydrophilic and hydrophobic metabolites
- Targeted metabolomics: method development for neurotransmitter profiling of *L. stagnalis*
- Apply both approaches to snails exposed to
 - i) imidacloprid
 - ii) a surface water extract

Background - Imidacloprid

Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

Tessa C. Van Dijk, Marja A. Van Staalduinen, Jeroen P. Van der Sluijs*

PLOSone 2013

Lymnaea stagnalis organ dissection

Sample pretreatment: Snap freezing in liquid nitrogen to quench the metabolic activity

16 week old snails, ± 2.85 cm shell length

Metabolomics workflow

Study design

ction of motak

Chemical analysis

Sample preparation

- A tissue normalization step was included to normalize data
- A mix of internal standards of different metabolite classes was added to normalize the signal intensities and to align retention times

Analytical strategy

Metabolic pathways investigated

HILIC, RP-LC and GC analysis

Waters **XBridge Amide** column, 150×2.1 mm, 3.5 µm; Amide guard column 10×2.1mm, 3.5 µm Gradients of ACN/H2O 30:70 v/v NH4HCOOH 10 mM (A) and ACN/H2O 95:5 v/v ammonium acetate 10 mM (B); for **pH 9.0** adjustment with ammonium hydroxide and for **pH 2.8** with HCOOH to pH 2.8. For both LC approaches, the separation occurred at 30 °C, the flow rate was set to 0.25 ml/min, and the injection volume was 5 µL

Waters **C18** Symmetry column, 150×2.1 mm, 3.5 μ m; C18 guard column 10×2.1 mm, 3.5 μ m Gradient of H₂O and ACN with 0.1 % formic acid.

GC-APCI Derivatization of chloroform fractions with 500 μ l of a methanolic BF₃ solution, kept for 30 min at 80 °C, with subsequent liquid/liquid extraction with hexane

HR-TOF-MS on MICROTOF II, Bruker

Platform performance - metabolome coverage

Hydrophilic and hydrophobic metabolite fractions

- Each analytical platform has its own specific performance for the different metabolite classes
- HILIC represents an important chromatographic method for polar metabolites

Molecular features

Targeted analysis of neurotransmitters, precursors and metabolites

IVM Institute for Environmental Studies

Tufi et al., J. Chromatogr. A 2015 13

HILIC columns tested

Physico-chemical parameters of the HILIC columns tested evaluated using a ToF-MS.

Column	Provider	Functionality/Support	Size (mm)	Particle size (µm)
XBridge HILIC	Waters	Silica/Silica	4.6 imes 100	2.5
XBridge Amide	Waters	Amide/Silica	2.1×100	3.5
TSKgel Amide-80	Tosoh	Amide/Silica	2.0×100	5
Asahipak NH2P-50 2D	Shodex	Amino/Polyvinyl alcohol Amino	2.0×150	5
ZIC-cHILIC	Merck-Sequant	Zwitterionic/Silica	2.1×150	3
ZIC-pHILIC	Merck-Sequant	Zwitterionic/Polymeric	2.1 imes 150	5

Separation factor k (log₂) distribution

Heat map and hierarchical clustering analysis of peak areas

HILIC-QqQ chromatogram of 20 neurotransmitters, precursors and metabolites

0.3 ml/min; gradient of 100% H_2O and 90:10 ACN: H_2O (v/v)

Method validation parameters

Analyte	Labeled IS	RT	RSD %; RT Intraday	RSD %; RT Interday	Linear range (ng/mL)	R ²	LOD (ng/mL)	LOQ (ng/ml	R %)	RSD % Method
3-MT	3-MT-d ₄	7.7	1.0	6.2	5-3000	0.996	1.11	3.3	95	2.2
5-HIAA	5-HIAA-d ₅	3.4	1.6	4.1	10-2500	0.990	3.85	12	90	2.3
5-Hydroxy-L-tryptophan	5-Hydroxy-L-tryptophan-d4	12.2	1.0	2.6	20-3000	0.975	3.68	11	73	6.8
Acetylcholine	Acetylcholine-d ₄	3.0	0.5	4.8	0.05-1000	0.998	0.02	0.1	92	1.1
Choline	Choline-d ₁₃	6.3	0.9	5.4	1-1000	0.990	0.35	1.0	85	2.1
L-DOPA	DOPA-d ₃	13.3	0.5	4.7	100-3000	0.902	19.5	58	84	9.4
Dopamine	Dopamine-d ₄	11.4	0.4	3.8	20-2500	0.995	5.50	17	86	2.7
Epinephrine	Epinephrine- ¹³ C ₂ ¹⁵ N	11.6	0.3	4.4	20-2500	0.986	5.56	17	87	3.3
GABA	GABA-d ₆	12.1	0.3	3.5	40-3000	0.979	19.3	58	81	4.2
Glutamate	Glutamate-d₅	13.6	0.8	2.2	20-3000	0.960	2.47	7.4	63	18
Glutamine	Glutamine- ¹³ C ¹⁵ N	13.3	0.3	2.5	5-3000	0.942	1.51	4.5	79	1.7
Histamine	L-Tryptophan-d₃	18.3	0.5	1.5	100-3000	0.973	25.2	76	89	1.7
Histidine	L-Tryptophan-d₃	15.8	0.4	2.5	20-400	0.930	0.31	0.9	89	1.7
L-Tryptophan	L-Tryptophan-d ₃	10.7	0.4	3.2	5-2500	0.993	0.54	1.6	89	1.7
L-Tyrosine	L-Tyrosine-d ₄	12.1	0.5	3.2	40-3000	0.948	8.22	25	72	3.0
Norepinephrine	Norepinephrine-d ₆	12.7	0.5	4.2	40-2500	0.942	13.2	40	89	4.2
Normetanephrine	Norepinephrine-d ₆	10.7	0.2	3.6	1-1000	0.995	0.28	0.9	89	4.2
Phenylalanine	Epinephrine- ¹³ C ₂ ¹⁵ N	10.3	1.0	3.2	0.1-1500	0.988	0.03	0.1	87	3.3
Serotonin	Serotonin-d ₄	10.5	0.8	3.9	0.5-2500	0.994	0.10	0.3	89	1.6
Tyramine	3-MT-d ₄	9.7	0.5	4.8	1-1000	0.997	0.35	1.0	95	2.2

Exposure to imidacloprid

10 DAYS CTRL GROUP 0.1 μg/L 1 μg/L 10 μg/L 100 μg/L

Conditioning period of 2 days for adaptation Refreshing and egg counting every second day

Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day8	Day 9	Day 10	Day 11	Day 12	Day 13	Day 14
Selection	Condition	Condition	Exposure	Exposure	Dissection								
			Egg		Egg		Egg		Egg		Egg		Egg
E a a d			counting		counting		counting		counting		counting		counting
Food			Food		Food		Food		Food		Food		Food
Refreshing			Refreshing		Refreshing		Refreshing		Refreshing		Refreshing		Refreshing

Tufi et al., under review Env Sci Technol 201519

Data analysis workflow

IMI 0.1

Nucleotides

and

- Indication of inflammation and neuron cell injury
- Involvement of the cholinergic system, possibly through an increase in cholinergic gene expression
- Indication of GABA receptor antagonist activity
- Insight in the involvement of different or unexpected metabolic pathways

Down-regulatedUp-regulated

Not-detected

Acknowledgment

More info: sara.tufi@vu.nl marja.lamoree@vu.nl

- Victoria Osorio Torrens and the EDA-EMERGE network
- Pim Leonards
- Jacob de Boer

THANK YOU

