RPLC/HILIC/API-MS: polarity extended analysis for organic molecules in water bodies

Sylvia Grosse and Thomas Letzel

Analytical Research Group Chair of Urban Water Systems Engineering Technical University of Munich

Ixia, Rhodes, 1st September, 2015

content

- polarity extension RPLC with HILIC
- HILIC retention mechanisms:
 - adsorption
 - > distribution (water layer)
 - electrostatic interaction
- stationary phases and mobile phases in HILIC
- serial HILIC-RP-MS coupling
- > application
- conclusion

Why polarity extension? Polar and nonpolar molecules

 $\log D = \log ([solute]_{oct}/([solute]_{wat})^{onized})$

Partition coefficient (P): $\log P = \log ([solute]_{oct}/[solute]_{wat})$

Distribution coefficient (D): (For charged molecules)

Log P < 0

or

Log D < 0

+ [solute]_{wat} neutral)

RPLC

H₂O/ACN

Separation of polar and nonpolar compounds Hydrophilic analytes Hydrophobic analytes

HILIC

hydrophylic interaction liquid chromatography

Reversed phase liquid chromatography

NP stationary phases RP eluents

Typical mobile phase

ACN/H₂O

RPLC vs. HILIC:

- Orthogonal
- Use of the same solvents
- MS compatible

Retention mechanisms

ADSORPTION

Analyte - Stationary Phase

Hydrogen bonding
Dipole - Dipole

Retention mechanisms

DISTRIBUTION

✓ at least 2-3% water are essential in the mobile phase!

Greco et al., J. Chrom. Sci, 2013

Retention mechanisms

ELECTROSTATIC INTERACTION

Stationary Phases

Stationary Phase: neutral

Stationary Phase: ionic

Adsorption

Stationary Phase: zwitterionic

Orthogonality RPLC and HILIC

RPLC-HILIC coupling

Polarity Extension

HILIC-RPLC application I:

1 Phe; 2 Leu; 3 Trp; 4 Ile; 5 Val; 6 Tyr; 7 Pro; 8 Thr; 9 Ala; 10 Asn

HILIC-RPLC application II: pharmaceuticals and neurotransmitter

HILIC-RPLC application II: pharmaceuticals and neurotransmitter

HILIC-RPLC application II: pharmaceuticals and neurotransmitter

HILIC-RPLC application II: pharmaceuticals and neurotransmitter

HILIC-RPLC application III: Sweetener and industrial chemicals, herbicide

HILIC-RPLC application IV: An Oxidation Scenario with Diclofenac

HILIC-RPLC application IV: Diclofenac oxidation

Literature proposed transformation products

Rajab, Greco, et al., J. Sep. Sci. 2013.

HILIC-RPLC application IV: Diclofenac oxidation

Rajab, Greco, et al., J. Sep. Sci. 2013.

HILIC-RPLC application IV: Diclofenac oxidation

conclusion

- Understanding of HILIC mechanisms
- > HILIC valid with logD value < 0</p>

- extended polarity with serial RPLC-HILIC coupling
- Combination of different chromatographic
 - techniques in just one technique (RP, GC, IC)
 - A new field of molecules is taped and will give a lot more interesting results

Dr. Giorgia Greco Dr. Mohamad Rajab Sofia Veloutsou Prof. Dr. Drewes and the whole team

> TECHNISCHE UNIVERSITÄT MÜNCHEN

Thanks...

Agilent Technologies

breaking with tradition[™]

Funding: This work was partially financed by the German Federal Ministry of Education and Research within the RiSKWa program, funding code 02WRS1354A.

Funded by:

Bundesministerium für Bildung und Forschung

Thanks...

And for your attention...

