

Transformations of triazole fungicides

Ulrike Mülow, P. Lehnik-Habrink, C. Piechotta

BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin

Federal Institute for Materials Research and Testing

Introduction

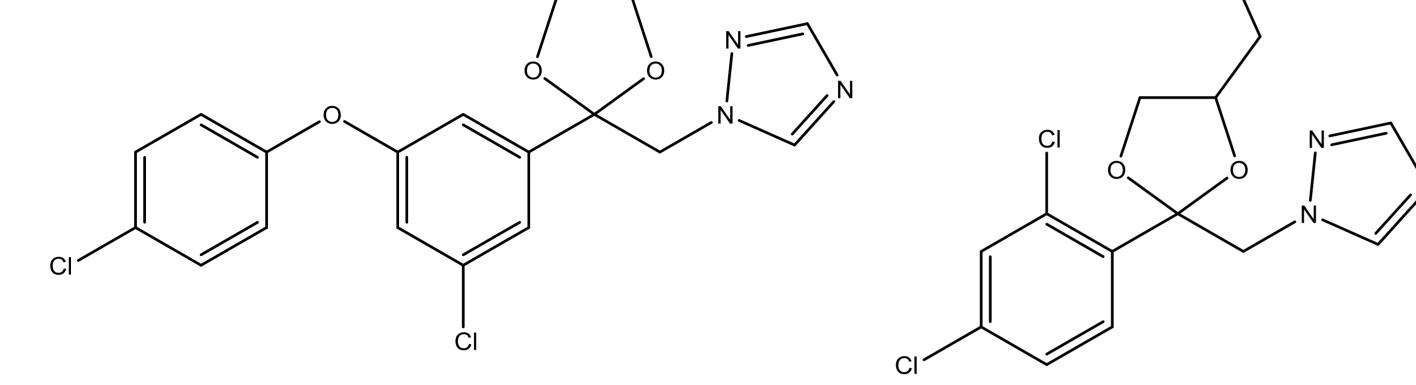
Triazole fungicides are a group of widely used pesticides. In 2013, their market share in Germany was 18.5%, making them the most commonly used organic fungicides.^[1]

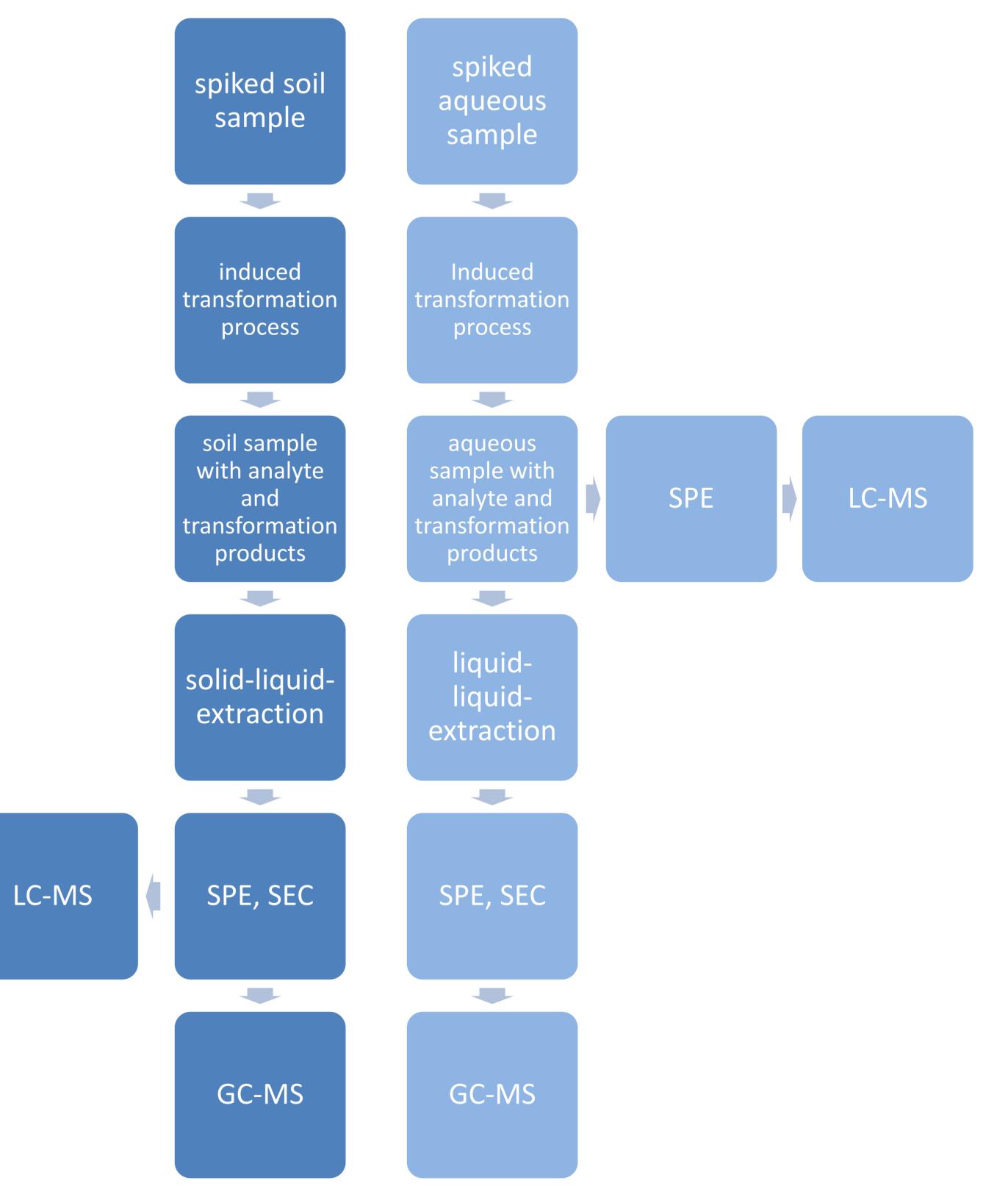
Difenoconazole and propiconazole (Fig. 1) are non-polar fungicides generally perceived as persistent.^[2] This results in a high potential for soil contamination. Polluted soils may then lead to water body pollution.

Experimental

Ruggedness test study for determination of effective solidliquid-extraction of pesticides using model soils of different total carbon content (Fig. 3).

Tab. 1: Total carbon content (C [%]) of the model soils.		
Model soil	C [%]	
Arm	0.84 ± 0.14	
Mittel	3.08 ± 0.27	
Reich	6.58 ± 0.80	
Cupar	10.61 ± 0.01	




Fig. 1: Difenoconazole (left) and Propiconazole (right).

- Fungicides are subject to transformation processes in the environmental compartments soil and water, as well as in waste water treatment plants (WWTP).
- Transformation products may be readily soluble in water and more toxic.

Objective

Investigation of degradation of difenoconazole and propiconazole under environmental and technical conditions. Identification of transformation products spiked compost. Increasing total carbon content (L-R). Super 10.61

Generation of transformation products in water and soil using model reactions (Fig. 4).

Theoretical Background

Pesticides can be transformed by various mechanisms in the environment and under technical conditions. Selected processes will be investigated (Fig. 2).

	Compartment	Induced transformation process
	Surface water	 Global radiation Bacterial metabolism Influence of humic substances
	Humus	 Global radiation Bacterial metabolism Bacterial metabolism Fenton reaction (soil remediation) Mobility Soil aging
S 0	Humus rich topsoil	
i	Mineral subsoil	
	Parent material	
	Ground water	 Bacterial metabolism Influence of humic substances
W	ater purification plant	 Chlorination Ozonation Energy-rich UV radiation Advanced oxidation processes (TiO₂)

Fig. 4: Sample generation, preparation, and analysis.

- Identification of transformation products:
 - EI-MS-spectra
 - HR-MS-spectra
 - Isolation of substances and NMR measurements
 - Synthesis of proposed transformation products and comparison of retention times and spectra
- Instrumentation: GC-MS (Agilent GC 7890 & Agilent MSD 5975)

Fig. 2: Compartments and selected transformation conditions.

UPLC-ESI-TOF-MS (Waters Acquity UPLC & Waters Micromass QTOF Ultima)

Outlook

- Identification of transformation products generated during Fenton reaction
- Treatment of fungicides with iron-oxidising bacteria

References

 ^[1] BVL (2014), Absatz an Pflanzenschutzmitteln in der Bundesrepublik Deutschland 2013
 ^[2] Pesticide Properties DataBase, University of Hertfordshire, http://sitem.herts.ac.uk/aeru/ppdb/index.htm

+49 30 – 81 04 – 5509 • ulrike.muelow@bam.de • www.bam.de

BAM Federal Institute for Materials Research and Testing- Richard-Willstätter-Str. 11 - 12489 Berlin