

DYNAMICS OF BIOCIDE EMISSIONS FROM BUILDINGS IN A SUBURBAN STORMWATER CATCHMENT

U.E. BOLLMANN AND K. BESTER

ueb@envs.au.dk

www.envs.au.dk

- State-of-the-art in material protection
 - In-can preservatives (Product type 6)
 - Film preservatives (Product type 7)
 - Wood protection (Product type 8)
 - Masonry preservatives (Product type 10)
 - Roof protection (flat roofs)
- Content in exterior renders and paints
 - 2-4 different biocides
 - 0.2% in render, 0.2-0.4% in exterior paints

Principal construction of external thermal insulation composite system (ETICS)

- Different compounds with biocidal effects
 - Isothiazolinones, carbamates, phenylureas, triazines, triazoles

» Hydrophilic molecules with toxic effects

Catchment

- Silkeborg (Denmark)
 - 21.5 ha, 7 ha connected to sewer, separated sewer system
 - Suburban, residential, 140 well-kept single family houses
 - 5 % equipped with renders/paints, 20 % (painted) wood, 75 % brickfacades

Sampling and Analysis

- Flow proportional high resolution sampling with automatic water sampler
 - October 2011-June 2012
- Solid phase extraction
- High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS)

Concentrations in stormwater runoff

Oct. 2011-June 2012; 191 flow controlled samples, IT: Isothiazolinone

Mass loads in stormwater runoff

Mass loads in stormwater runoff

Emission dynamics

Biocide leaching in the weather chamber

First Flush

80% of the pollutant mass is transported in the first 30% of the volume of rainfall events

Bertrand-Krajewski et al., Wat Res 32 (1998) 2341

Emission dynamics

>> Common events

Flow controlled samples; TB: Terbutryn , CD: Carbendazim, IP: Isoproturon, TBU: Tebuconazole, MCPP: Mecoprop

Emission dynamics

>> First flush: occurs irregularly

Flow controlled samples; TB: Terbutryn , CD: Carbendazim, IP: Isoproturon, TBU: Tebuconazole, MCPP: Mecoprop

Emission dynamics – combined sewer

>> Diurnal cycle

WWTP Bjermarken (Roskilde , Denmark), 12x 2h combined samples of the influent

Poster Biocides in combined sewer systems

- What is influencing the leaching?
- Correlation of the concentration or acc. mass load per event with:
 - Rain amount / accumulated flow
 - Length of the event
 - Rain intensity
 - Length of the dry period prior to the event
 - Wind driven rain intensity

1

>> Run-off volume <> Wind-driven rain (WDR)

Mass flow M during respective event

 $M_{WDR} = C_C C_S I_{Rain} U$

with C_s = substance specific constant C_c = catchment specific constant

>> Wind-driven rain causes leaching of biocides from stormwater catchment

Stormwater catchment Silkeborg North, average mass flow per event CD: Carbendazim, TB: Terbutryn, MI: Methylisothiazolinone, PPZ: Propiconazole, TBU: Tebuconazole

Conclusions

- Monitoring
 - Direct emissions via stormwater in suburban areas
 - Biocides in urban areas can exceed quality standards
 - Different footprint than in other European countries
- Emission dynamics
 - Usually rather constant throughout an event
 - Irregular first flush phenomena
 - Indication for correlation between occurrence in stormwater and wind driven rain

- No first-flush stormwater treatment possible
- Unnecessary loss of substance Fine tune application?

Stormwater treatment necessary!

Acknowledgement

- Scientific cooperation:
 - Jes Vollertsen (Aalborg University)
 - Jan Carmeliet and Timothy Wangler (ETH Zurich, Switzerland)
 - Michael Burkhardt (HSR, Rapperswil, Switzerland)
- Diverse companies in the sector for the willingness to share materials and knowledge
- Financial support:
 - Danish EPA through the project Methods for the improvement of scenarios concerning the emission of biocides from buildings (667-00065 & 667-00066)
 - AUFF grant: Advanced water purification using bio-inorganic nano catalysts and soil filters (www.waterpurification.au.dk)

Thank you for your attention!

DYNAMICS OF BIOCIDE EMISSIONS FROM BUILDINGS IN A SUBURBAN STORMWATER CATCHMENT

U.E. BOLLMANN AND K. BESTER

ueb@envs.au.dk

www.envs.au.dk