Advanced Identification of Unknown Compounds

Robert Mistrik HighChem Bratislava, Slovakia

- Nature of mass spectrometry (Inherent problems with structure elucidation)
- Numerous problems associated with library search
- Existing LCMS spectral databases are small and contains virtually the same compounds
- Ad hoc identification
- Promises made by computer assisted methods have not been fulfilled yet

- Spectra reproducibility Experimental variability
- Spectra quality
- Spectra specificity
- Information ambiguity
- Isomers differentiation
- Structural diversity
- Accuracy issues
- Spectrum/Structure relationship

Serotonin, CID MS³ [M+H]⁺ \rightarrow m/z 174.09134

- Spectra reproducibility Experimental variability
- Spectra quality
- Spectra specificity
- Information ambiguity
- Isomers differentiation
- Structural diversity
- Accuracy issues
- Spectrum/Structure relationship

NAD+, HCD MS2 [M+H]+

- Spectra reproducibility Experimental variability
- Spectra quality
- Spectra specificity
- Information ambiguity
- Isomers differentiation
- Structural diversity
- Accuracy issues
- Spectrum/Structure relationship

Problems Associated with LCMS Library Search

- Spectra reproducibility Experimental variability
- Spectra quality
- Spectra specificity
- Information ambiguity
- Isomers differentiation
- Structural diversity
- Accuracy issues
- Spectrum/Structure relationship

mzCloud - a freely searchable collection of high resolution/accurate spectra

- Spectral trees intuitively organized multi-stage tandem mass spectra
- Identification of compounds even if they are not represented in the library
- Comprehensive spectral data a guarantee for correct compound identification
- Filtered and recalibrated spectra
- Third generation spectra correlation algorithm
- Structurally annotated spectral peaks using non-trivial prediction methods
- Substructure search capable of extracting spectra with common structural scaffolds
- Fragment structure support throughout the database
- Extensive experimental information and identifier metadata data
- Rigorously curated data
- Advanced cloud technology
- Multiple databases

Spectral Trees

mzCloud.org

Compounds

1 840

Trees

2 4 9 3

www.mzCloud.org

¥≣ FII	E HOME	F INSERT PA	ige layou ⁻	t for	RMULAS DATA	A REVIEW VI	price EW ADD	ed_results_2073 -INS	886.xlsx [Re	ad-Only] - Excel	1111	U			? 🗹 🗕 Microsoft ac	Count •
			✓ Ruler	✓ Fo	rmula Bar				Split Hide	Synchronous So	de crolling					
Norn	nal Page Break Preview L	Page Custom avout Views	✓ Gridline	s ✓ He	eadings Zoo	m 100% Zoom to Selection	n Window	Arrange Freez All Panes	e Tunhid	e Reset Window I	Position Windo	tch Macros ows • •				
	Workbook \	/iews		Show		Zoom				Window		Macros				^
Q1	-	: × 🗸	fx													~
	В	С	D	E	F	G	Н	1	J	L	М	N	0	Р	Q	
1	CNC_ID	SUPPLIER	CLASS	SALT	DELIVERY	PURITY	QTY_REQ	QTY_UOM	QUOTE	COMPLICOUNTRY	SMILES					-
21	333881308	Vitas-M Lab	cSC		14 days	92%	10	mg	53		[S](=O)(=O)((Nc2cccc2)c1	cccc1			
22	370201988	Vitas-M Lab	cSC		14 days	92%	10	mg	53	Germany,Japan,U	Cc1ccccc1					
23	375123776	Vitas-M Lab	cSC		14 days	92%	10	mg	53	Japan	CICC=O					
24	61877676	Sigma-Aldrie	c SC		2 days	90%	100	mg	72		N(N=O)(CCC	cc)cccc				
25	375314535	Sigma-Aldrid	c SC		2 days	90%	100	mg	91		BrC(CI)(CI)C	(=0)0				
26	61877777	Sigma-Aldrid	c SC		2 days	90%	100	mg	40		N(N=O)(C)C	:				
27	61877639	Sigma-Aldrid	c SC		2 days	90%	100	mg	123		BrC(Br)(CI)C	C(=O)O				
28	113930575	Matrix Scier	n'SC		14 days	95%	250	mg	99		IC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F			
29	371597844	Combi-Block	k SC		14 days	95%	1000	mg	50		N1(C(C(=O))	N(C1=O)CO)(C)C)CO			
30	371599816	Combi-Block	k SC		14 days	95%	250	mg	350		N(C(C)C)CC((O)COc1ccc(cc	1)CCOCC2CC2	2		
31	238713722	Enamine	SC		7 days	95%	100	mg	49		N(C(C)C)C(=	O)NC(C)C				
32	88119394	Oakwood Pr	rcSC		30 days	90%	250	mg	40		FC(F)(F)C(F)	(F)C(F)(F)C(F)(I	F)C(F)(F)C(F)(F	F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)(ссо
33	379401147	Oakwood Pr	rcSC		30 days	90%	250	mg	424		BrC1C(CCC(C1)C(Br)CBr)Bi	r			
34	379415604	Oakwood Pr	r(SC		30 days	90%	250	mg	221		BrC(=Cc1ccc	ccc1)Br				
35	16375272	Oakwood Pr	r(SC		30 days	90%	250	mg	23		FC(F)(F)C(F)	(F)C(F)(F)C(F)(I	F)C(F)(F)C(=O))0		
36	379364662	Oakwood Pr	rcSC		30 days	90%	10	ml	23		N(C(C)C)C(C	C)C				
37	68571773	InterBioScre	SC	Na+	30 days	90%	10	mg	625		[Na+].N(C2=	=C(c3c(c(cc3)	0[С@@Н]40	с([с@@H]([с	.@Н]([С@Н]4С	D)O(
38	344673409	Labotest	SC		14 days	90%	10	mg	46	United Kingdom	Clc1c(ccc(c1	L)CI)OCC(=O)O	-			-
39	344671122	Labotest	SC		14 days	90%	10	mg	46		CI\C(=C(/CI)	\C=0)\C(=0)0)			
40	344665972	Labotest	SC		14 days	90%	10	mg	46		[N+](=O)([O	-])c1c(c(c(c1	C)[N+](=O)[O-	-])C)[N+](=O)[0-])C(C)(C)C	
11	244070051		~		14 -	000/	10		10		01colocolo					•
4	Cart	207386.XIS	(\pm)	_	1				•	4		_				
READ	Y											COL	JNT: 13 🏢			- 100%

Spectra

134 029

Anotations

673 622

Peaks

218 827 961

more ...

Spectral Trees Acquisition

Orbitrap	TreeRobot	
	Not Note: Interface A gutting: MS1 -> MS2 MS2 -> MS3 MS1 -> MS2 MS2 -> MS3 MS1 -> MS2 MS3 -> MS3 MS1 +> MS2 MS3 -> MS3 MS2 += MS2 MS3 -> MS3 MS2 += MS2 MS4 -> MS4 MS1 +> MS2 += MS4 MS4 -> MS4 MS1 +> MS2 += MS4 <tr< th=""><th></th></tr<>	
	Comprenensive Spectral Trees	

mzCloud: Rigorously Curated Data

mzCloud: Rigorously Curated Data

mzCloud: Rigorously Curated Data

Mass Frontier 7.0

IMPORTER

mzCloud – Raw, Filtered and Recalibrated Spectra

- Fully searchable sample database
- Predicted fragments for suspect compounds
- Precursor Ion Fingerprinting
- Real time validation of search algorithm
- Breakdown curves

Precursor Ion Fingerprinting (PIF)

Sheldon, Michelle T., Robert Mistrik, and Timothy R. Croley. "Determination of ion structures in structurally related compounds using precursor ion fingerprinting." Journal of the American Society for Mass Spectrometry 20.3 (2009): 370-376.

Metabolite Identification Using PIF/mzCloud

General fragmentation rules

Fragmentation Library

Total number of	Mass Frontier 7.0
Fragmentation Schemes	30.936
Individual Reactions	129.229
Chemical Structures	151.762

	Source	Volume	Year
1.	JASMS (Journal of the American Society for Mass Spectrometry)	1-17	1990-2006
2.	IJMSIP (International Journal of Mass Spectrometry and Ion Physics)	1-53	1968-1983
	IJMSIP (International Journal of Mass Spectrometry and Ion Processes)	54-175	1983-1998
	IJMS (International Journal of Mass Spectrometry)	176-255	1998-2006
3.	RCM (Rapid Communications in Mass Spectrometry)	1-20	1987-2006
4.	JMS (Journal of Mass Spectrometry)	30-41	1995-2006
5.	OMS (Organic Mass Spectrometry)	1-29	1968-1994
6.	JMSSJ (Journal of the Mass Spectrometry Society of Japan)	11-27 29-30 37-48 50-53	1964-1979 1981-1982 1989-2000 2002-2005
7.	MSR (Mass Spectrometry Reviews)	1-25	1981-2006
8.	EJMSBMER (European Journal of Mass Spectrometry in Biochemical, Medicine, and Environmental. Research)	1-2	1980-1982
9.	BMS (Biomedical Mass Spectrometry) BEMS (Biomedical and Environmental Mass Spectrometry) BMS (Biological Mass Spectrometry)	1-12 14-19 20-23	1974-1985 1987-1990 1991-1994
10.	JC (Journal of Chromatography)	181-536	1980-1991
11.	EJMS (European Journal of Mass Spectrometry)	4	1998

Knowledge based prediction of fragmentation pathways

Knowledge based prediction of fragmentation pathways

Evaluation of fragmentation pathways by high-level quantum-mechanical calculations based on DFT method

Prednisone

(17,21-dihydroxypregna-1,4-diene-3,11,20-trione)

- 3D conformer generator for fragments of concern
- Construction of competitive reaction mechanism
- Calculation of potential energy surface (PES)
- Transition state localization and vibrational analysis
- Reaction rate prediction based on RRKM method

Example for competitive reaction in the fragmentation pathway

PES for corresponding reaction, followed by transition state localization and reaction rate calculation

Spectrum Info Mass Differences Compare Spectra Compare Trees -Þ Data Filter: + c ESI Full ms3 272.30@43.00 215.10@39.00 [55.00 7_H+ 147.12 7H+ 100-7H+ 75-¬_H+ ¬_H+ 50-173.15 159/14 25-198.17 93.00 0 Т 125 150 225 100 175 200 250 275

• Matching *in silico* m/z values against experimental spectra

• Fragment annotation

What are the compounds?

BINGO Initiative

- Systematic identification of unknowns
- Inspired by Model Organism Metabolome initiative
- Advanced strategy
- Focused on limited number of samples
- Smart standards selection and acquisition
- Collaborative effort
- H2020 project proposal
- Everyone is welcome to join (robert.mistrik@highchem.com)

Let's make our dream come true

Precursor Ion Fingerprinting (PIF)

Sheldon, Michelle T., Robert Mistrik, and Timothy R. Croley. "Determination of ion structures in structurally related compounds using precursor ion fingerprinting." Journal of the American Society for Mass Spectrometry 20.3 (2009): 370-376.

Gelsemine Metabolite Identification by PIF

Fragment Ion Search (FISh)

Metabolite identification using FISh

Metabolite identification using FISh

Acknowledgment

- Juraj Lutisan, Milos Suchy, Alena Bednarikova, Andrea Belicova, Jakub Mezey, Martin Mandak, Michal Raab HighChem, Bratislava, Slovakia
- Ernst Pittenauer, Gunter Allmaier Vienna University of Technology, Vienna, Austria
- Yingying Huang, Mark Sanders, Tim Stratton, Junhua Wang, David Peake, Ralf Tautenhahn, Lukas Najdekr, Kate Comstock Thermo Fisher Scientific, San Jose, CA

Initial mzCloud data set

• Eric Genin, Emma Schymanski, Heinz Singer, Arpana Vaniya, Vladimir Patoprsty, Silvia. Vlckova, Wei Wei, Christophe Junot