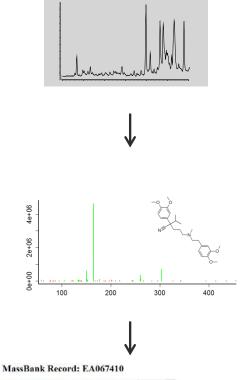

RMassBank: Automatic Recalibration and Processing of Tandem HR-MS Spectra for MassBank

Eawag: Swiss Federal Institute of Aquatic Science and Technology


Michael Stravs, Emma Schymanski, Heinz Singer and Juliane Hollender Eawag – Department of Environmental Chemistry Dübendorf (Zurich), Switzerland

RMassBank Questions: massbank@eawag.ch

Overview

- Building a spectral library: challenges
 - o clean-up
 - \circ annotation
- RMassBank workflow
 - o data processing
 - \odot record creation
- Results and examples

Home I Spectrum I Galek I Paule i Substructure I Breaser I Breaser I Macollaris D

Verapamil; I.C-ESI-ITFT; MS2; 45%; R=15000; [M+H]+

ACCESSION: EASCHIL RECORD TITLE Vergenzil LC-EILITTY, NEJ 184, 3-15005 [H-8]+ RECORD TITLE Vergenzil LC-EILITY, NEJ 184, 5-15005 [H-8]+ RECORD TITLE VERGENZIE LICENSE NEJS/TAmeshaka LT. SUDger M. JOperment of Evyloamental Chemistry, Leveg LICENSE NEJS/Tameshaka USI.of/MassBackfile/License.toxi COMMENT LODI/INTG Faceback Compound COMMENT LODI/INTG/ Faceback Compound

Building a spectral library - Challenges

Processing spectra efficiently

- o Manual entry
 - o tedious
 - Available tools not suited for mass processing
- o Metadata collection / annotation
- o Reproducible procedure

Ensuring high quality

- Noise removal / clean-up
- Mass accuracy
- o Curation

Building a spectral library

Previous approaches to «clean-up» and annotation*

- Simple noise cutoff e.g. WA001201
 - Cut-off at 5 ‰ (MassBank reporting can go down to 1 ‰)
- Minimal or no processing e.g. CE000143
 - Many low intensity noise peaks, including peaks above [M+H]⁺
- Minimal annotation e.g. JEL00007

The result

- Inconsistent and varying quality of spectra in MassBank
 - → "spectral dump" **

** Thanks to Oliver Fiehn for this apt description!

Spectral Clean-up

MassBank Record: WA001201

MS\$DATA	_PROCESSING:	FIND_	PEAK	ignore	rel.int.	< 5
PK\$NUM I	PEAK: 19					
PK\$PEAK	: m/z int. re	el.int				
102 6	3 63					
105 8	8					
130 1	33 133					
131 8	8					
139-2	0 20					
162 1:	2 12					
163 1:	2 12					
166 8	34 834					
167 5	9 59					
178 1:	2 12					
180 6	3 63					
182 2	4 24					
184 9	99 999					
185 6	3 63					

* These examples are demonstrations only and no offense intended!

Spectral Clean-up MassBank Record: CE000143

MS\$FOCUSED_ION: PRECURSOR_M/Z 268.10404 MS\$FOCUSED_ION: PRECURSOR_TYPE [M+H]+
PK\$NUM_PEAK: 20
PK\$PEAK: m/z int. rel.int.
76.423012 1164.474609 2
79.144173 972.286438 2
88.860359 1310.202271 2
106.183556 1195.565674 2
135.887161 3993.299072 7
135.992874 3979.442627 7
136.034454 2340.972656 4
136.041092 1992.728271 4
136.061371 568236.125 999
136.08461 4257.030762 7
136.130478 2980.912598 5
136.228577 1192.598145 2
136.234634 1166.915161 2
197.613419 1193.385498 2
203.694138 1189.134888 2
219.079987 21971.183594 39
237.09053 180033.921875 317
292.21759 1154.94812 2
293.092346 1334.223755 2
293.587189 1281.828003 2
11

These examples are demonstrations only and no offense intended!

Spectral Clean-up – Orbitrap spectra

Garbage in = garbage out!

Measurement artefacts include

- Systematic increase in ppm error with low *m/z* values
 - \circ 5 ppm accuracy => 15 ppm at m/z < 100
- Satellite or shoulder peaks result of FT instrument processing
- Consistent electronic or measurement noise peaks
- Noise peaks at a ~fixed level hiding real peaks of lower intensity
 - $_{\circ}~$ A strict noise cut-off will result in a loss of information

High mass accuracy standard spectra have advantages:

- Meringer et al. (2011) showed a missing subformula indicates instrument noise or interfering peaks
 - Use subformula assignment to perform spectral clean-up!

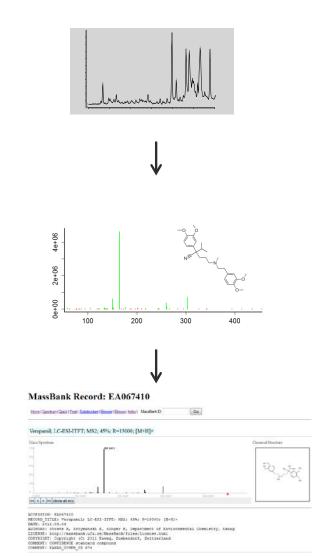
Meringer et al. 2011, MATCH Commun. Math. Comput. Chem. 65, 259-290.

Annotation

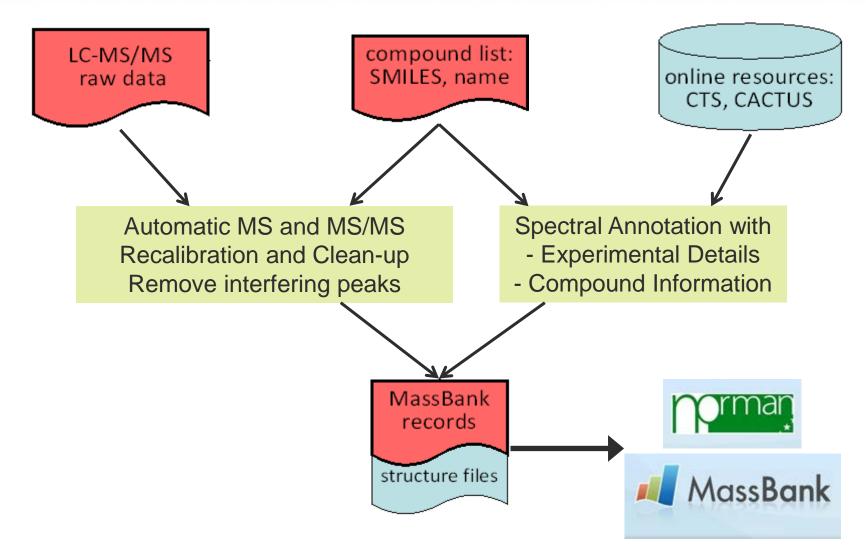
Mandatory

- o Name, structure, InChI, SMILES
- o Minimal analytical information
 - MS instrument
 - MS polarity and spectrum type

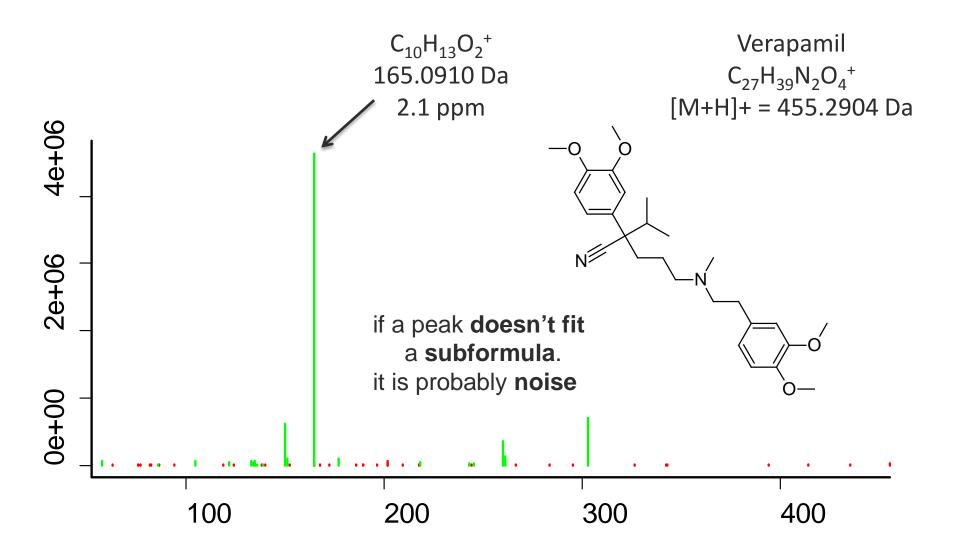
Optional and useful!


- Links to databases
 - CAS, KEGG, ChEBI, PubChem...
- Analytical conditions
 - Chromatography, RT [...]
 - MS2: precursor, conditions [...]
- Peak annotation
 - o chemical formula, substructure

more is better, but manual work is tedious


Building a spectral library - RMassBank

- Automate what can be automated
- Ensure high quality
- Workflow from raw LC-MS file to annotated spectrum
 - spectrum extraction
 - processing and clean-up
 - automated annotation using internet resources


RMassBank Workflow – Simple Form

Stravs, Schymanski, Singer and Hollender, 2012, Journal of Mass Spectrometry, 2013, 48, 89–99. DOI: 10.1002/jms.3131

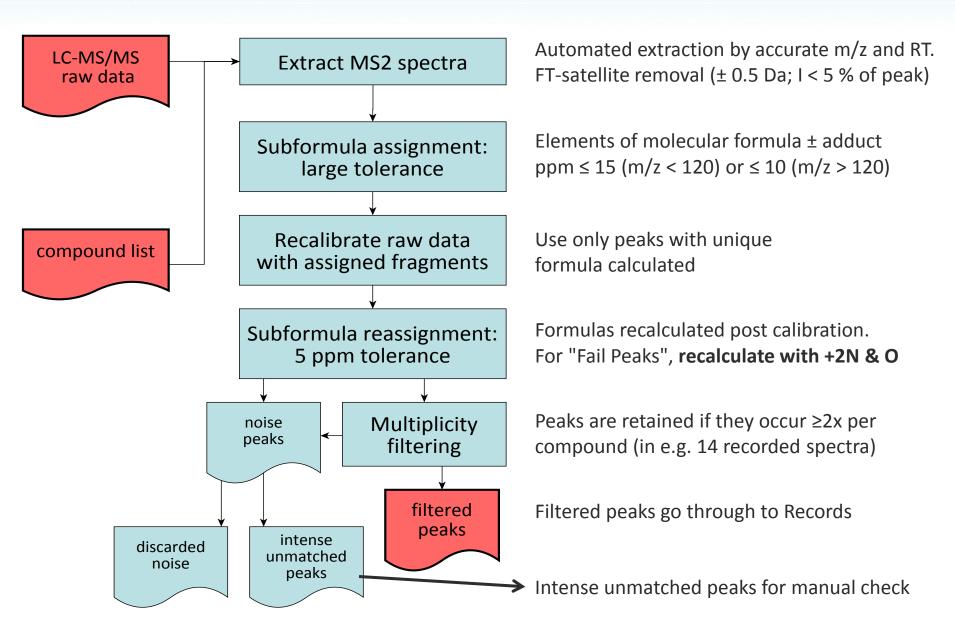
RMassBank – Example Clean-up

Spectral Annotation

Matching Spectrum and Compound Information

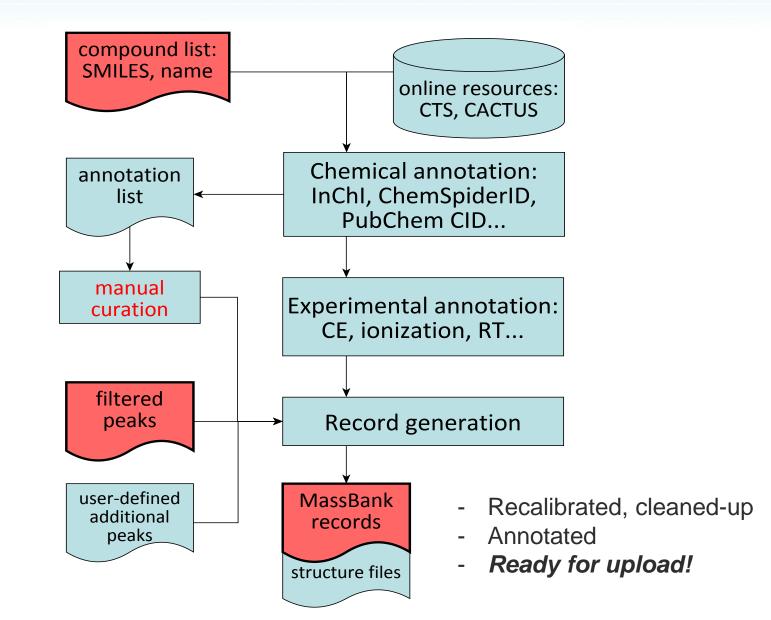
User needs to contribute a bare minimum of information

- Only the user knows what compound has been measured
 - At least one form of unambiguous compound identifier is required
 - o e.g. internal ID, name, SMILES and retention time
- Measurement parameters / methods / settings are relatively consistent
 - These can be added in batch form, not individually


Internet Services: Let search engines do the work for you!

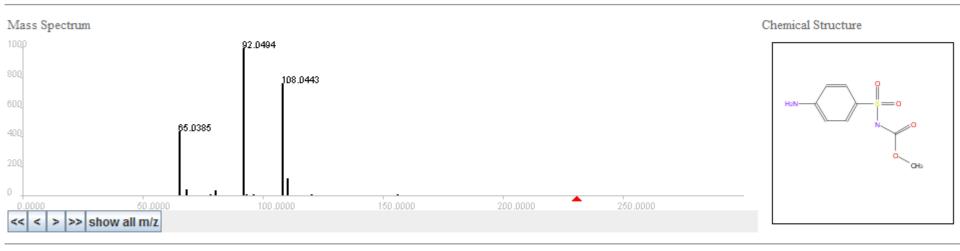
- CACTUS Chemical Identifier Resolver¹
 - SMILES (c1ccccc1) to InChI Key (UHOVQNZJYSORNB-UHFFFAOYSA-N)
- Chemical Translation Service (CTS)² to do the rest
 - Names, CAS #, InChI and Identifiers (IDs, if available): PubChem CID, ChemSpider, ChEBI, HMDB, KEGG, LipidMaps

¹ http://cactus.nci.nih.gov/chemical/structure



RMassBank – Clean-up and Recalibration

RMassBank – Spectrum Annotation

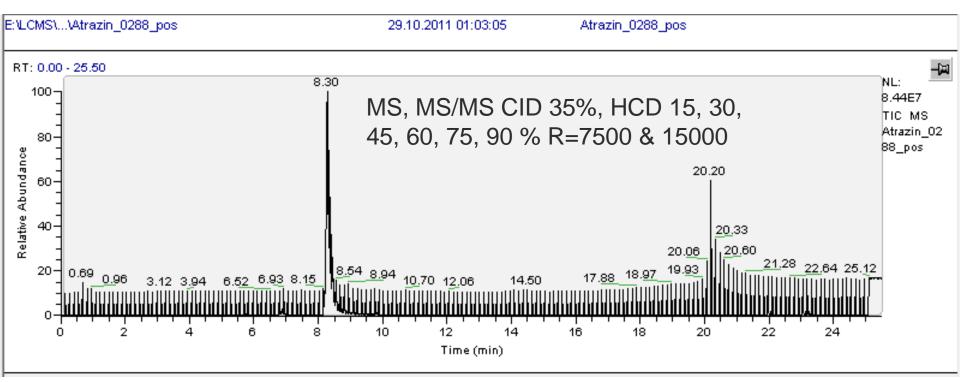

Example MassBank Record

MassBank Record: EA015612

Home | Spectrum | Quick | Peak | Substructure | Browser | Browse | Index | MassBank ID:

Go

Asulam; LC-ESI-ITFT; MS2; 75%; R=15000; [M+H]+



ACCESSION: EA015612 RECORD_TITLE: Asulam; LC-ESI-ITFT; MS2; 75%; R=15000; [M+H]+ DATE: 2012.03.16 AUTHORS: Stravs M, Schymanski E, Singer H, Department of Environmental Chemistry, Eawag LICENSE: http://massbank.ufz.de/MassBank/files/license.html COPYRIGHT: Copyright (C) 2011 Eawag, Duebendorf, Switzerland COMMENT: CONFIDENCE standard compound COMMENT: EAWAG_UCHEM_ID 156

Experimental

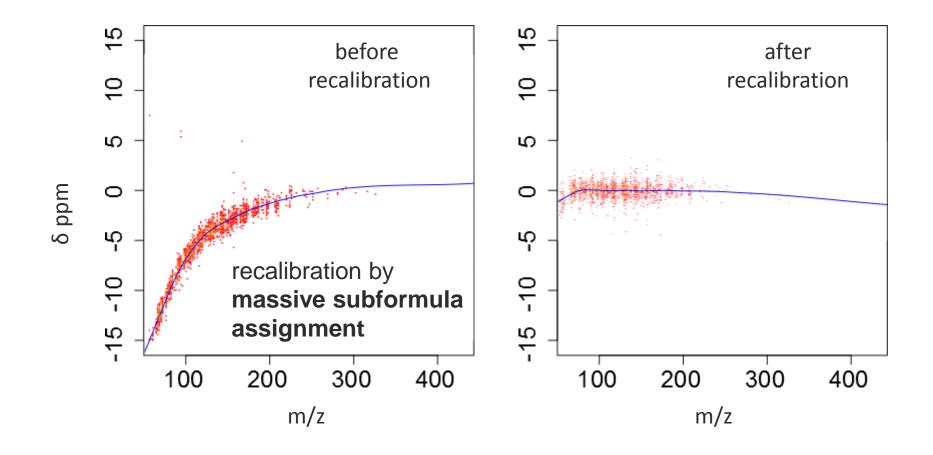
- Individual Injection; routine chromatography; Orbitrap XL with ESI + / -
- Daily vendor-recommended calibration

Screened for $[M+H]^+$ precursor within RT ± 0.3 min MS/MS retrieved from MS with highest intensity

Processing: The Numbers

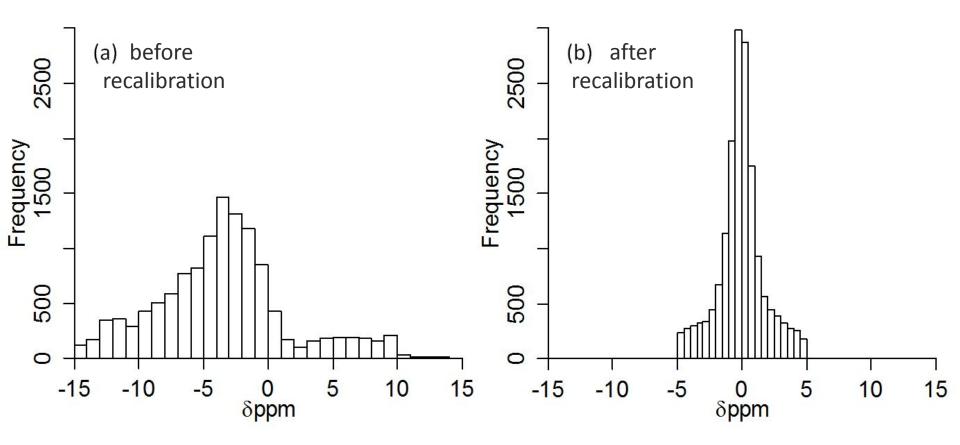
- 68 of 70 pesticides with sufficient [M+H]⁺ for processing
- o 55,594 peaks present following satellite removal
 - 14,699 witl
 13,305 of t
 76 % of peaks are noise!
 - 13,305 Of these presention of Narand H O adducts
- \circ 454 peaks with sub-comparison of N₂ and H₂O adducts
 - 256 of these occurred at leis relevant in MS/MS! => reproducible
- o Only 44 peaks remained for "manual inspection"
- No difference observed between spectra with different resolutions

Additional modes (results not shown here)

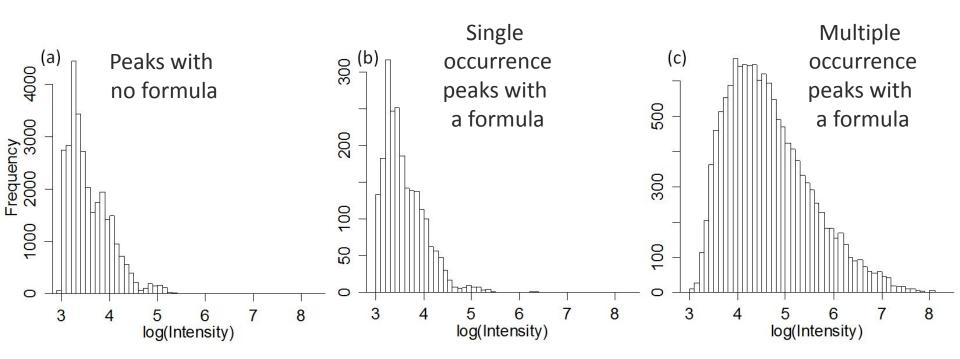

○ M⁺, [M+Na]⁺, [M-H]⁻, M⁻, [M+FA]⁻,

Effect of Recalibration

o Shown in the next few slides...



Recalibration Curve: Relative mass deviation over *m*/*z*



Recalibration: Relative Mass Deviation Distribution

Frequency of Occurrence of Peaks by Intensity: Multiplicity Filtering

if a peak **doesn't occur at least twice** (in 2x7 spectra) it is probably **noise**

944 MS/MS spectra from [M+H]⁺ of 70 pesticides

- o www.massbank.jp
- o <u>www.massbank.eu</u>

Total Number of "RMassBank Spectra"

RMassBank records in NORMAN MassBank:

- 6,106 records (364 compounds) from Eawag Orbitrap XL
- 1,030 records (216 compounds) from UFZ Orbitrap XL
- Q-Exactive spectra (not yet on NORMAN MassBank)

RMassBank «advanced usage»

For R workflow developers (xcms, nontarget, CAMERA...)

- o dd-MS2 processing
- o recalibration, filtering
- o Interface to CTS, CACTUS
- Chemical formula calculations (C6H5 + H2O = C6H7O)
- o fragment formula assignment
- o (database search)

... if you are fluent in R $\ensuremath{\textcircled{}}$

Conclusions: RMassBank

The RMassBank Workflow

- Reduces much manual work associated with bulk creation of many records
- Creates high quality MS/MS spectra
- Annotation with formula adds value to the spectra
- Works very well for the spectra it was developed on (Orbitrap)
- BUT: Every mass spectrometer is different:
 - Processing and measurement steps will probably need adjusting

Benefit for Contributors

- We have learnt a lot about our spectra and compounds (e.g. MS/MS adducts!)
- o MassBank is being used within our department
- If you want to know more about what recalibration can do for your data:
 - Stravs et al. 2012, J. Mass Spectrom., DOI: 10.1002/jms.3131

Acknowledgements

- o Coauthors: Emma Schymanski, Heinz Singer, Juliane Hollender
- o R & MassBank help: Steffen Neumann, Michael Gerlich, Carsten Kuhl, (IPB)
- O Discussions: Matthias Ruff, Martin Loos (Eawag); Tobias Schulze,

Martin Krauss, Werner Brack (UFZ)

o Programs: Markus Meringer (MOLGEN-MS/MS), Florian Rasche (Sirius),

Miguel Rojas-Cherto & Egon Willighagen (MEF)

- o MassBank & Naming Rights: Prof. Takaaki Nishioka
- o NORMAN Association

Any Questions?

Michael Stravs, Emma Schymanski, Heinz Singer and Juliane Hollender

massbank@eawag.ch (ES, MS) stravsmi@eawag.ch emma.schymanski@eawag.ch

DOI: 10.1002/jms.3131 All Details Contained Within!