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•  Yangtze river with red water near Chongqing (China Press) Saturday 9th Sept 
2012 
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•  Xenobiotics such as drugs, pesticides, pharmaceuticals and 
EDC have been labelled as Emerging Contaminants 

•  Sources are industrial and domestic effluents, agricultural 
run offs, municipal sewage.  

•  In WWTP ECs are discharged in un-metabolized form or as 
metabolites  

•  WWTP treatment technology are very often unable to 
entirely degrade persistent ECs 

•  Accumulation in the aquatic environment where they may 
cause ecological risk, such as interference with the 
endocrine system of higher organisms, microbiological 
resistance and accumulation in soil, plants and animals 

•  Alternative advanced technologies are needed for 
treatment of WWTP effluents  
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•  Oxidation of ECs in the 
presence of light, iron 
salts and hydrogen 
peroxide 

•  Effective for the removal 
of ECs 

•  pH < 4 (to prevent iron 
precipitation) 

•  Treatment of non-acidic 
wastewater is too costly 
because of pH adjustment 

•  Increase in water salinity 



Solar Photo-Fenton Oxidation Process 
Secondary biological effluent, El Ejido WWTP, Almeria, Spain 
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Neutral pH pH 4 

Klamerth et al., Catal. Today 161(2011) 241 



Solar Photo-Fenton Oxidation Process on Immobilized Iron 
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•  TiO2/Fe oxide immobilized on PVF 

•  Degradation of a mixture of 14 ECs 
spiked to WWTP in two CPC (8.5 L) at 
mild pH 

•  Consecutive runs with 3.1 mM H2O2 

•  Contaminants with Fe(III) chelating 
groups degraded at faster rates  

•  Catalyst was active for 20 days without 
loss of efficiency 

 

Mazille et al., Wat. Res. 44 (2010) 3029 



Advanced Oxidation: Heterogenous Photocatalysis 
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Photocatalytic Reactors: UV Lamp and Solar Reactors 

Rotating Disk (Dionysiou) 
 

  
 

Fountain (Li Puma) 
 

  
 

Falling Film (Temine) 
 

  
 

Compound Parabolic Collector 
(CIEMAT) 

 

  
 

Double Skin 
(Wolkswagen, Banhemann)  

 

  
 

Parabolic Trough (PSA) 
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Comparison of Solar Photocatalytic Reactors Efficiencies 

•  Four geometries were tested: Compound 
parabolic collector (CPC), V-through 
collector (VTC), parabolic trough collector 
(PTC) and flat tubular collector (FT)    

•  TiO2 (P25) slurry suspension  

Bandala and Estrada, J. Solar Energy Eng. 2007, 129, 22. 

Carbaryl degradation 
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•  Cross between trough concentrators 
and one sun systems  

•  Best optics for non-concentrating 
systems 

•  Have the advantage of both systems 

•  Uses both direct and diffuse sunlight 

•  High pressure and temperature is 
allowed 

•  No vaporisation problems 

•  Filming of the tube wall can be a 
problem 

Compound Parabolic Collector, Commercial Installation, Colombia 
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Courtesy of Fiderman Machuca, Universidad del Valle, Cali, Colombia 



Solar Compound Parabolic Collector (CPC) – Ray Tracing 

Courtesy of Jose Colina, Universidad de Cartagena, Cali, Colombia 

Colina, Machuca, Li Puma, Environ. Sci. Technol. 43 (2009) 8953 

Solar Direct Radiation Solar Diffuse Radiation 
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Photocatalytic Mineralization of a Commercial Mixture of 
Herbicides (2,4-D, Diuron, Ametryne) in a Pilot-Scale Solar CPC 
Reactor  Colina, Machuca, Li Puma, Environ. Sci. Technol. 43 (2009) 8953 
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Photocatalytic Treatment of Emerging  
Contaminants 
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•  Optimal photocatalyst concentration for industrial 
wastewater treatment in current solar photoreactor designs 
is several hundreds of mg/L 

•  However, the elimination of ECs, which are present at 
extremely low concentration may be accomplished at much 
lower catalyst concentrations 

•  If the catalyst concentration is lowered below the optimum 
- loss of useful photons – lower reactants conversions 

•  Laboratory and solar pilot scale experiments were 
performed with real WWTP effluents to evaluate the 
kinetics of photocatalytic degradation of 52 ECs under 
realistic (ppb) concentrations 
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Radiative Transfer Equation 
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Spectrophotometer 
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4 pside + pforward + pbackward = 1  
 

•  Photons are either scattered or 
absorbed upon colliding a particle 

•  Scattering randomly follows one of 
the six Cartesian directions    

•  Fluid does not absorb radiation 

•  Uniform distribution of particles 

Six-Flux Radiation Absorption-Scattering Model 
Li Puma, et al., Environ. Sci. Technol. 38 (2004) 3737; Brucato et al., AIChE J., 52 (2006) 3882;  
Li Puma and Brucato, Catal. Today 122 (2007) 78. 
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Solar Compound Parabolic Collector (CPC) – Ray Tracing 
Colina, Machuca, Li Puma, Environ. Sci. Technol. 43 (2009) 8953 
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Radiation Absorption in Tubular and CPC Solar Photoreactors   
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Colina, Machuca, Li Puma, Environ. Sci. Technol. 44 (2010) 5112 

TiO2 = 0.1 g/L  

TiO2 = 0.1 g/L  TiO2 = 0.5 g/L  

TiO2 = 0.5 g/L  

Environmental Nanocatalysis & Photoreaction 
Engineering – Department of Chemical Engineering	




Optimum Catalyst Loading – Validation Against Literature   
Colina, Machuca, Li Puma, Environ. Sci. Technol. 44 (2010) 5112 

•  CPC – 70% higher radiation 
absorption than tubular reactor: 
agrees with data of degradation of 
oxalic acid (Bandala, 2004) and 
methylene blue (Arias, 2008) 

•  CPC requires 39% less catalyst to 
operate under optimum conditions 

•  Scattering albedo of TiO2 
(Degussa P25) under solar 
radiation is 0.88:  Optimal 
catalysts TiO2 concentration is 
0.21 g/L in a 32 mm CPC 
reactor –  agrees with 
experimental data of degradation 
of many pollutants (Malato, 
2004); 2,4-DCP (Gimenez 1999); 
4-CP (Guillard, 2003); PCP 
(Minero, 1996) 
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Secondary biological effluents El Ejido WWTP, Almeria, Spain - 89 
contaminants detected by HPLC-QTRAP-MS, 52 were quantified 
(DOC = 13-23 mg/L, IC = 110-132 mg/L, COD = 43-63 mg/L)   
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Contaminant	
   C0 (ng/
L) 	
   Contaminant	
   C0 

(ng/L)	
   Contaminant	
   C0 (ng/
L)	
   Contaminant	
   C0 (ng/

L)	
  

4-AA	
   1315	
   Citalopram HBr	
   17	
   Ibuprofen	
   726	
   Primidone	
   50	
  

4-AAA	
   12702	
   Clarithromycin	
   54	
   Indomethacine	
   437	
   Propanolol	
   17	
  

4-FAA	
   4617	
   Codeine	
   192	
   Isoproturon	
   172	
   Propyphen.	
   32	
  
4-MAA	
   2824	
   Cotinine	
   287	
   Ketoprofen	
   428	
   Ranitidine	
   710	
  
Antipyrine	
   681	
   Diazepan	
   68	
   Lincomycin	
   192	
   Salbutamol	
   81	
  

Atenolol	
   1241	
   Diclofenac	
   4425	
   Mefenamic Acid	
   18	
   Simazine	
   704	
  

Atrazine	
   305	
   Diuron	
   1081	
   Mepivacaine	
   28	
   Sulfadiazine	
   36	
  

Azithromycin	
   69	
   Erythromycin	
   78	
   Naproxen	
   2968	
   Sulfamethazine	
   236	
  

Benzafibrate	
   44	
   Famotidine	
   19	
   Nicotine	
   450	
   Sulfamethoxazol	
   999	
  

Caffeine	
   17175	
   Fenofibric Acid	
   142	
   Norfloxacin	
   29	
   Sulfapyridine	
   131	
  

Carbamazepine	
   114	
   Furosemide	
   100	
   Ofloxacin	
   1614	
   Terbutaline	
   85	
  

Chlorfenvin.	
   29	
   Gemfibrozil	
   2622	
   Paraxanthine	
   17750	
   Trimethoprim	
   1661	
  

Ciprofloxacin	
   305	
   Hydrochlorothia.	
   780	
   Pravastatin	
   75	
   Velafaxime	
   539	
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Pilot Scale Experiments: Sunlight Irradiation (PSA, Almeria, Spain)  
 

PHOTOREACTOR CONFIGURATION 1 

• Two CPC modules with twelve, 32 mm 
O.D. Pyrex tubes per module – the same 
as in the laboratory scale reactor 

• Total irradiated volume = 22 L 

• Total irradiated area = 3.1 m2 

• Total volume in the system = 35 L 

PHOTOREACTOR CONFIGURATION 2 

•  Two CPC modules with ten, 50 mm 
O.D. Pyrex tubes per module  

•  Total irradiated volume = 45 L  

•  Total irradiated area = 4.5 m2 

•  Total volume in the system = 60 L 

•  We followed the degradation of 16 
ECs (90% of pollutant load)  

•  The remaining 36 ECs (10% of 
pollutant load) were represented as a 
cumulative concentration  

Prieto-Rodriguez, et al. , J. Hazard. Mat. 211-212 (2012) 131 
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Treatment of WWTP Secondary Biological Effluent (El Ejido 
WWTP, Almeria, Spain) 
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Prieto-Rodriguez, et al. , J. Hazard. Mat. 211-212 (2012) 131 



Radiation Absorption Optimization in Tubular and CPC Solar 
Photocatalytic Reactors 

catC
d

)( κσ
τ

+
=

Colina, Machuca, Li Puma, Environ. Sci. Technol. 44 (2010) 5112 
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Table 2. Radiation absorption in the pilot scale photoreactors estimated from modeling the 

CPC by ray-tracing coupled with the six-flux absorption-scattering model [17].  

 Photoreactor I Photoreactor II 

TiO2 P25 loading [mg/L] 20 20 

Inner tube diameter [mm] 29.2 46.4 
Optical thickness, τ 0.86 1.36 

Radiation absorbed per unit length [W/m] 12.6 36.9 
Maximum rate of photon absorption[W/m] (i) 41.6 66.1 
Radiation absorption efficiency 30.3% 55.8% 

	
  



Radiation Absorption Optimization in Tubular and CPC Solar 
Photocatalytic Reactors of Any Diameter   

corrapp a 2
maxmax, 1 ωττ −=)2()(max Rcat RCκστ +=

Colina, Machuca, Li Puma, Environ. Sci. Technol. 44 (2010) 5112 

Optical Thickness (max) 
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Treatment of ECs using Immobilized 
TiO2 

Slurry (5 g/L) Immobilized 
(first cycle) 

Immobilized 
(fifth cycle) 

Miranda-Garcia et al., Catal. Today 151 (2010) 107 

•  Sol-gel deposition of 
TiO2 on glass spheres 

•  Slurry and 
immobilized catalyst: 
Degradation rates 
appear to be similar  

•  But slurry reactor was 
not operated 
efficiently (optimum 
TiO2 should be 0.2 g/
L). 
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Solar Photocatalytic Ozonation 

Oyama et al., Solar Energy 85 (2011) 938 

•  BDDAB - benzyldodecyldimethylammonium bromide 

•  DBS – dodecylbenzenesulfonate 

•  BNS – butylnaphtalenesulphonate 

•  BPA – bisphenol-A 

•  2,4-D – 2,4-dichlorophenoxyacetic acid 



Photodegradation of Estrogens 

Estrogenic activity: E2 > EE2 > E1 and E3 
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UVA and UVC Photolysis 
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•  Basic steroid structure. Aromatic ring 
responsible for the absorption properties in the 
UV, due to π→π* transition at 200<λ< 250 nm 

•  Higher absorption and reactivity under UVC 
irradiation is expected from structural 
considerations 

•  Moderate degradation of estrogens with UVA, no 
degradation for estriol 

•  With UVC irradiation, photolysis highly increases 
for all components in the mixture. Much faster 
degradation of estrone 

Photocatalysis & Photoreaction Engineering 
Department of Chemical Engineering  
 

Li Puma et al., Appl. Catal. B: Environ. 99 (2010) 388 



Degradation Kinetics of Estrogens Mixtures 

UVC photolysis
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Li Puma et al., Appl. Catal. B: Environ. 99 (2010) 388 



Estrogens Degradation in a Fountain Photocatalytic Reactor 
Li Puma and Yue, Ind. Eng. Chem. Res. 40 (2001) 5162; Chem Eng. Sci. 56 (2001) 2733 and 56 (2001) 721   

•  Umbrella shape unsupported water fountain 
•  High photocatalyst activation  
•  High oxygen mass transfer rate 
•  Can use both direct and diffuse sunlight 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120
Time (min)

Es
tr

og
en

 C
on

ce
nt

ra
tio

n 
(m

g/
L)

 17-alfa-ethylnyloestradiol

17-beta-oestradiol

Oestriol

Oestrone

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5

Catalyst Loading (g/L)

Is
op

ro
tu

ro
n 

C
on

ve
rs

io
n 

%
Environmental Nanocatalysis & Photoreaction 
Engineering – Department of Chemical Engineering	


Prof. Li Puma with Fountain Photoreactor 



Integration of Advanced Oxidation and Biodegradation  
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Oller et al., Sci. Total Environ. 409 (2011) 4141 



Photo-Fenton and IBR: α-Methylphenylglycine (MPG)  
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Oller et al., Sci. Total Environ. 409 (2011) 4141 

Oller et al., Catal. Today 122 (2007) 150 

75 L 

165 L 
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“Solar Hydrogen” uses Renewable Natural Resources 
  

Biomass 
(Waste) 

Water 

Solar light 
Nanostructured 
Photocatalyst 

Photocatalytic PlatePhotocatalytic Plate
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Solar-Hydrogen: Photo-Reforming 

Oxidation products 
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Photocatalytic Reforming of Glycerol on Pt/TiO2 

C3H8O3  + 3H2O→ 3CO2  + 7H2
4.1cm 

4.1cm 
4.1cm 

d=0.25cm 

•  Cell, cubical shape 
photoreactor irradiated 
by simulated solar light 

•  One-order of magnitude 
increase in the rate of H2 
evolution compared to 
pure water 

•  Stoichiometric production 
of H2 and CO2 

Daskalaki and Kondarides, Catal. Today, 144 (2009) 75 
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Scale-up 3: Pilot Scale Solar Photoreactor 
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•  Continuous production of hydrogen from glycerol wastewater @ 300 
micromole/min - Prof. Li Puma – Loughborough University 
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Using Biomass Derivatives As Sacrificial Agents 

•  Carbohydrates from food manufacturing industries 

•  Cellulose from paper making 

•  Lactose from dairy industries 

•  Maltose from fermentation industries 

•  Sulfite refinery wastewater from gasoline desulfurization 
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•  Solar powered advanced oxidation - effective process for the 
treatment of ECs in WWTP effluents  

•  Large diameter CPC treat ECs efficiently using low catalyst 
concentrations 

•  Optimization of solar reactor for ECs treatment – use lowest 
catalyst concentration and larger reactor diameter, related to the 
total pollutant load – lower cost of catalyst recycling 

•  More engineering pilot and large scale demonstration studies 
should be carried out at different scales –home/domestic, semi-
industrial, industrial and municipal   

•  Photocatalytic reforming of biomass waste may provide an efficient 
and low cost method for production of renewable hydrogen from 
waste biomass   

Conclusions 

Environmental Nanocatalysis & Photoreaction 
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