MetFusion: integration of compound identification strategies

MassBank Workshop 27.11.2012 Amsterdam, The Netherlands

Introduction

Structures & Spectra

- Target list of interesting MS² spectra
- Requires expert knowledge
 - Time-consuming
 - Impossible to keep track of high-throughput
- Only small fraction of compounds has associated reference spectrum
 - Required for speed-up in re-identification
 - Difficult to use for de novo identification

Structures vs. Spectra Imbalance

- Millions vs. thousands, overlap unknown
- Spectrum queries not possible for compound databases

Observation vs. Prediction

- Observation: MassBank
 - Search measured spectra with peak list
 - Find compounds with matching/similar spectrum
 - Few reliable results
- Prediction: MetFrag
 - Combinatorial Fragmenter
 - Generate fragments in silico, matches to peak list
 - Uses compound databases,
 many possible predicted results

MetFusion = Observation, Prediction & Similarity

- Combine results via chemical similarity
 - Structural fingerprints
 - Use each information (score)
 - Avoid strict limits/thresholds
- Aim: improve identification
 - Assume that correct compound is present in compound database (larger coverage)
 - Enhance MetFrag results with spectral data
 - DOI 10.1002/jms.3123

What is similar?

Chemical Similarity

Spectral Similarity

Similarity Measures

Chemical Similarity

- Tanimoto coefficient matches properties
- $Tan = \frac{C}{A+B-C}$
- [0,1]

Spectral Similarity

- Modified Cosine distance
- Matches peak masses & intensities
- $W_i = int_i^m * m/z_i^n$
- [0,1]

Similarity Matrix

MF\MB	C00509[0.975]	C06561[0.965]	C09099[0.956]	C09789[0.916]	C03406[0.599]	C04577[0.520]	C00158[0.502]	C10107[0.468]	C00311[0.418]	[0.413]
C00509[1.000]	1	0,299	0,721	0,632	0,14	0,152	0,106	0,464	0,106	0,338
C16232[1.000]	0,916	0,293	0,687	0,617	0,14	0,152	0,1	0,468	0,1	0,365
C06561[0.966]	0,299	1	0,252	0,243	0,102	0,142	0,097	0,445	0,097	0,259
C12087[0.966]	0,25	0,316	0,24	0,243	0,122	0,212	0,089	0,328	0,089	0,32
C14458[0.966]	0,618	0,316	0,5	0,45	0,113	0,149	0,091	0,38	0,091	0,289
C09826[0.909]	0,9	0,289	0,701	0,629	0,126	0,153	0,102	0,494	0,102	0,35
C03567[0.462]	0,582	0,316	0,479	0,442	0,11	0,149	0,088	0,379	0,088	0,292
C09614[0.462]	0,913	0,292	0,699	0,624	0,14	0,155	0,1	0,478	0,1	0,36
C09751[0.443]	0,904	0,292	0,704	0,632	0,132	0,152	0,102	0,504	0,102	0,354
C09047[0.426]	0,376	0,411	0,332	0,322	0,119	0,141	0,077	0,6	0,077	0,248
C17673[0.426]	0,355	0,323	0,322	0,303	0,133	0,12	0,082	0,37	0,082	0,434
C15567[0.409]	0,538	0,286	0,486	0,454	0,12	0,146	0,077	0,382	0,077	0,311
C01263[0.350]	0,5	0,221	0,484	0,475	0,111	0,109	0,051	0,435	0,051	0,346
C01592[0.133]	0,469	0,366	0,343	0,3	0,126	0,144	0,136	0,23	0,136	0,221
C08578[0.110]	0,298	0,946	0,252	0,247	0,098	0,142	0,092	0,47	0,092	0,272

$$S_i = \alpha M F_i + (1 - \alpha) \sum_{j=1}^{N} sig(MB_j * Tan_{i,j})$$

Results

- Test data set: 1099 spectra
 - Secondary metabolites, drugs, toxins, ...
 - 344 unique compounds
 - Spectra from Hill et al., RIKEN & IPB
- Median rank of correct compound improved
 - MetFrag: 28
 - MetFusion: 7
- ➤ Works when informative spectra are present, but also when there is loss of information

MetFrag vs. MetFusion

Example

- Tripeptide Gly-Gly-His
- 269.2572 Da
- QqQ spectrum from NIST

– mzabs 0.1 da, mzppm 30ppm

- No tri- or polypeptides present in MassBank
 - But amino acids present

Original Similarity Matrix

Re-ranked Similarity Matrix

Recent additions

- MassBank alternatives
 - Metlin, 54.000 MS2 spectra
 - GMD, 8.800 GC-MS spectra with RI

HMDB access pending

InChlKey-based filtering

- MetFrag candidate list often > 1000
- Lots of stereoisomers per candidate
- Results in clusters, valuable information scarce

- Use connectivity information from first part of InChlKey to retain only one representative per candidate
- Smaller list of candidates

InChlKey

- First part connectivity
- Second part stereochemistry

 Image taken from http://www.iupac.org/publications/ci/2009/3105/iw6_inchi.htm

Summary

- Combine reference data & prediction
- Improves rank of correct compound
- Access multiple tools within one webpage
 - SDF & XLS export

Available as web app
 http://msbi.ipb-halle.de/MetFusion/

Acknowledgements

- Dr. Steffen Neumann
- Dr. Emma Schymanski, EAWAG
- Members of MassBank consortium
- Sebastian Wolf, MetFrag developer
- Group members Carsten & Christoph

Thank you for your kind attention