Institute for Environmental Studies (IVM)

Toxicity profiling and use of bioassays in monitoring programs

Perspectives for development and implications for regulations

Timo Hamers and Pim Leonards - NORMAN Expert Group 1

Monitoring of (emerging) environmental pollutants

Chemical analysis

- + Identity known
- + Concentration known
- Not all compounds analyzed
- Compounds <DL not found
- Effect of mixture unknown
- Growing list of substances

Bioassay

- + Effect of the mixture known
- + Mode of action known
- Identity responsible compounds unknown

Profiling individual compounds

E.g. "suspect" in crime case

- Caucasian male
- 35-40 years old
- About 1.90 meter tall
- Robust physique
- Short, black hair
- Decent appearance
- Blue/grey blocked shirt with short sleeves
- Khaki-colored trousers
- Brown belt with chrome buckle
- Grey leather sandals
- Dark rectangular sunglasses
- Description
- Combination of (common) characteristics
- Identification of the "bad guys"

Profiling complex mixtures

E.g. Department C&B at IVM

- High Quality Contaminant Analysis
- Toxicity profiling
- Development of biomarkers and bioassays
- Effect Directed Analysis (EDA)
- Academic environment
- Description
- Combination of (common) characteristics
- · Hard to see individuals' contribution
- Total assessment of the mixture
- · Useful for quality assessment

Toxicity profiling: multiple characteristics

Biomonitoring using specific bioassays

	MOD	E OF	ACT	ION
Compound 1	4	2	7 33	
Compound 2	1	23.0		
Compound 3			5	
Compound 4				4
Compound 5	1	2		
Compound 6	2	1		
Compound 7			1	
Compound 8				
Compound 9	1	2		
Compound 10		2		
Compound 11			1	
Compound 12	3		4	

	Mixture	3	2	2	2
--	---------	---	---	---	---

Toxicity profiling of individual compounds

... and their metabolites

Toxicity profiling of brominated flame retardants (BFRs)

Toxicity profiling of brominated flame retardants (BFRs)

Compour			/0			/0	/0	/0	A	. /		
artiple	//	2000/11	Paris	& /	2200	Ranta	Ranta	Paris E	EUL	2000	Saria	32000
CO.	/0	~/&	5/4	R/S	5/Q	6/6	E/ &	~/i		0/1	0/8	E/&
BDE-19	3	1	1	1	1	5	4	3	3	1	1	1
BDE-28	2	1	1	1	3	3	2	2	4	1	1	1
BDE-38	3	1	2	4	1	3	2	1	2	1	1	1
BDE-39	1	1	1	1	2	3	2	1	1	1	1	1
BDE-47	2	1	2	1	3	3	2	4	1	1	1	1
BDE-49	3	1	2	2	2	4	3	3	5	1	1	1
BDE-79	2	2	1	3	1	3	2	1	1	1	1	1
BDE-99	1	1	1	2	2	3	2	1	1	1	1	1
BDE-100	3	1	1	1	2	5	3	2	4	1	1	1
BDE-127	1	1	2	1	3	3	2	2	2	1	1	1
BDE-153	1	1	1	4	1	2	3	1	1	1	1	1
BDE-155	3	1	1	1	1	3	3	2	3	1	1	1
BDE-169	1	1	2	1	3	1	1	2	1	1	1	1
BDE-181	1	3	3	3	1	3	3	1	1	1	1	1
BDE-183	1	3	1	3	1	2	3	2	3	1	1	1
BDE-185	1	2	3	1	1	2	3	1	1	1	1	1
BDE-190	1	3	3	3	1	3	3	3	1	1	1	1
BDE-206	1	1	1	1	1	1	1	2	1	3	1	1
BDE-209	1	1	1	1	1	1	1	2	1	1	1	1
TBBPA	1	1	5	1	1	1	1	5	3	1	1	1
246-TBP	1	3	5	1	1	2	2	4	1	1	1	1
6OH-BDE 47	1	4	4	3	1	3	3	3	1	1	1	1
HBCD TM	1	2	1	1	2	2	3	1	3	1	1	1
HBCD a	1	1	2	1	3	3	3	1	4	1	1	1
HBCD b	1	2	2	1	2	2	2	1	3	1	1	1
HBCD g	1	3	1	1	2	3	3	1	4	1	1	1
TBBPA-DBPE	1	1	3	1	1	1	1	4	1	1	1	1

Class	Criterium
8. 188	Effect <20% at 10 µM
2	20% < effect < 50% at 10μ M
3	$1 \mu M < EC_{50} < 10 \mu M$
4	$0.1 \mu M < EC_{50} < 1.0 \mu M$
5	$0.01 \mu M < EC_{50} < 0.1 \mu M$
7 4 7 7	

Toxicity profiling of brominated flame retardants (BFRs)

Parent compound vs metabolites: example of BDE-47

Toxicity profiling of environmental samples (complex mixtures)

Example of Harbor Sediments

Toxicity profiles of harbor sediments

PAHs dioxines PCBs

Houtman et al. (2004) Environ.Toxicol.Chem. 23, 32-40 Estrogens as DDT, nonylphenol, phthalates

Decreased Genotoxic respiration, compounds e.g. carbaryl, as PAHs nonylphenol, (metals)

rdam 1535

Toxicity profiling of harbor sediments: Comparison to watersystem-specific reference

Oosterschelde Rijn- en Maasmonding Zuid Rijn- en Maasmonding Noord Rijn- en Maasmonding Midde	/	OR.CALLY TOTAL	EP. CA.	16101 VIV 10181	olders Hyp.	Vibrio f.	Vibrio fiso.	olders in all the stable	letoto Soum	04000 A	0,1-1 1 1-10 10-100 100-1000 >1000
Oosterschelde 1	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	refer	ence
Oosterschelde 2	16	2,8	6,7	1,0	1,0	1,3	1,0	1,0	1,0		
Zierikzee buiten	65	20	2,1	1,0	4,5	13	1111	2,1	1,0		
Zierikzee binnen	1178	99	25	1,0	1,0	13	1,0	1,0	3,0		
Haringvliet	2,0	1,2	3,7	1,0	1,2	1,8	1,0	1,0	1,0		
Dintel Sluizen	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	refer	ence
Moerdijk	2,4	1,4	0,7	1,0	0,5	2,9	1,0	1,0	3,0		
Nieuwe Maas	1,3	5,9	1,5	1,0	1,0	1,2	1,0	2,7	1,0		
Nieuwe Waterweg	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	refer	ence
Rotterdam IJssel Haven	4,2	52	7,8	1,0	2,2	14	1,0	1,0	1,0		
Rotterdam 2e Petroleumhaven	10	36	13	2,0	3,1	6,9	14	1,0	1,0		
Biesbosch 1	0,9	1,4	1,1	1,0	1,0	1,3	1,0	0,5	1,0		
Biesbosch 2	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	refer	ence

Ecological validation of toxicity profiles

The famous "so-what?" question

In vivo validation of in vitro bioassays

Ecological relevance

LEVEL

Molecular

Cellular

Organ

Individual

Population

Community

Ecosystem

Sonneveld et al. (2006) Toxicol.Sci. 89, 173-187

In vitro

Ecological validation of in vitro bioassays

Ecological validation of in vitro bioassays

Example 1: Derive safe value for dioxin-like compounds

Example 2: NORMAN working group 2

The use of bioassays in monitoring programmes: interpretation of results

- Definition and standardization of the interpretation of the results of monitoring with bioassays
- Validate relationship between biological quality (WFD species lists) and effects measured with bioassays or biomarkers
- Standardize and scientifically underpin interpretation of biomonitoring results
- Uncertainty analysis

Perspectives for development and implications for regulations

Perspectives for development & implications for regulations

Individual compounds

- · Get GRIP (Grouping, Ranking, Prioritization)
 - QSARs, read-across
 - Reduced animal testing
 - REACH
- Include metabolization of chemicals
 - NORMAN annual workshop 2
- Expanding test set with -omics
- · In vitro in vivo validation is a bottle-neck

Perspectives for development & implications for regulations

Complex environmental mixtures

- · Get GRIP (Grouping, Ranking, Prioritization)
 - Reference profiles for locations with different use
 - Safety net to select samples for EDA
 - Prioritize sampling locations ("hot spots")
- Use as tool for investigative monitoring in WFD
 - Relationship between bad ecological quality and chemical stress
- Expanding test set with -omics
- Bioassay ecosystem validation is a bottle-neck
 - NORMAN working group 2

Tasks for Norman 2009-2010

Expert Group Toxicity Profiling

- Meeting November 2009 (Amsterdam)
- · Position paper on use and interpretation of toxicity profiles
 - Profiles as such (GRIP)
 - In combination with EDA
 - Ecological relevance?

Working Group Bioassays in Monitoring

- Inventory of bioassays (specific and non-specific)
- · Discussions on
 - Interpretation of results
 - Requirements for implementation
- Develop strategic plan
 - Validation Study
 - Final workshop

