

# Toxicity Identification in Contaminated Sediments

Dr. Werner Brack, Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ

Werner.Brack@ufz.de





# Why do we care about sediments?

-Valuable ecosystem with high biodiversity providing crucial goods and services including e.g.

- -Decomposition and nutrient cycling
- -Carbon storage
- -Provision of food and clean drinking water



Covich et al. (1999) BioScience





# do we care about sediments?

#### **Under risk of toxicants!**

Example: effects of methoxychlor on sensitive species and leaf litter decomposition in a creek in the U.S.



(sensitive species, shredders)





# Why do we need EDA?

A priori selected target compounds:

- ♣ Tiny portion of possible compounds (>16 million)
- \*Often no explanation of observable effects

Chemical analysis of all compounds impossible and not helpful (no data on effects)

- ⇒ Chemical analysis needs to be directed on those compounds with adverse effects
- ⇒ Concept of "Effect-directed analysis" combines biotesting, fractionation and chemical analysis

# 16 mio known chemicals

thousands of compounds in sediment extracts





# **EDA Approach**





# **EDA Approach**



# First step: toxicity characterisation

Sediment contact tests and selective removal of toxicant groups





# **EDA Approach**

## Second step: toxicity identification













algae daphnia bacteria

- + dioxin-like activity
- + mutagenicity .....

highly complex mixture of compounds





⇒ multistep fractionation procedure









## identified key toxicants in Bitterfeld sediments





herbicide, inhibitor of photosynthesis

insecticide





#### identified key toxicants in Bitterfeld sediments



Dinaphtho[2,1-b;2',3'-d] furan

AhR-mediated (dioxin-like) effects

2-(2-Naphthalenyl)-benzothiophen

Dinaphtho[1,2-b; 1',2'-d]furan



1,2,3,4,7,8-HxCDF a.o. PCDFs



# Strong points/week points

#### strong points

- -isolation and identification of individual toxicants even in very complex mixtures
- -no advance information on target compounds required
- -possible for many tox. endpoints
- -directs analysis to hazardous compounds beyond monitoring lists

#### weak points

- -bioavailability
- -extended fractionation procedures with subsequent testing: laborous and bearing risks of artefacts.
- -structure elucidation without standards and for non-volatile compounds might be very complex.
- -quantitative confirmation of success
- -hazard confirmation

#### ⇒ attempts to improve weak points





# **Consider bioavailability**

#### Assumptions:

- 1) bioavailable mixture rather than extractable mixture relevant for hazards and risks
- 2) composition may be different due to different bioavailability of components
- 3) operationalisation of bioavailability required
  - ⇒ -bioaccessibility (desorption kinetics)
    - -equilibrium partitioning





# **Consider bioavailability**



Extraction of bioaccessible fraction

**Extraction of rapidly desorbing fraction with TENAX** 

Schwab & Brack 2007 J. Soils Sed.

CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ



# **Consider bioavailability**

# Partition-based dosing techniques



- -PDMS rods loaded with sediment extracts
- -Partitioning according to
- K<sub>PDMS/water</sub>
- -simulation of OC/water/ biota partitioning in sediments

-constant dose due to compensation of losses (adsorption, degradation, evaporation.....)





## Optimized fractionation procedures

- -fractionation and isolation of toxicants as key to successful toxicant identification
- -optimum fractionation would be characterised by
  - -multi-dimensionality (according to different properties)
  - -high resolution
  - -low risks of artefacts
  - -high degree of automation
  - ⇒ automated multistep NP-HPLC procedure
  - ⇒ preparative capillary gas chromatography





# Optimized fractionation procedures

#### automated multistep NP-HPLC procedure

- group-specific separation of most important sediment contaminants in one step



- alkanes, alkenes, sulphur, nonplanar diaromatic compounds
- PAHs, S-, O-heterocyclic PACs
- keto-, hydroxy-, nitro-PAHs, N-heterocyclic PACs, quinones
- chlorinated diaromatic compounds (PCBs, PCDDs/Fs)







# Optimized fractionation procedures



⇒ preparative capillary gas chromatography (pcGC)

-Separation based on partitioning between mobile gas phase and stationary liquid phase



-Good reproducibility

⇒ Separation of difficult mixtures of isomers e.g. technical nonylphenol

-not for non-volatiles and thermally labile compounds

Meinert et al. 2007 Chemosphere





Most frequently used: gas chromatography with mass selective detection (GC-MS)





Problems of library use for compound identification:

Only a small portion of possible compounds may be found in the library

376 mass spectra in NIST

5,300 in the Beilstein database

#### Example:

Compounds with MW = 150

⇒ Risk: Even with good matches you cannot be sure that you have identified correctly

615,977,591 possible compounds





#### Alternative:



generation of all possible structures fitting to the MW e.g. with MOLGEN

stepwise reduction of number of candidates

final list of candidates









Example: unknown compound from a groundwater fraction



available in NIST

HELMHOLTZ
| CENTRE FOR
| ENVIRONMENTAL
| RESEARCH – UFZ



#### Hazard confirmation

Do identified toxicants pose a hazard?

# **Example: Pollution induced community tolerance** (PICT)

Basic idea: Communities that have been affected by a specific toxicant are more tolerant to the same compound if exposed again.

Reason: Sensitive species disappeared

⇒PICT confirms effects on community level





#### **Fazaro confirmation**

Confirmation of effects on higher levels under realistic

exposure conditions

 prometryn identified as key toxicant for green algae in sediments from Bitterfeld (Spittelwasser)

⇒ confirmation by higher tolerance of Bitterfeld biofilms to prometryn compared to reference (Mulde)







RESEARCH - UFZ