Prioritising chemicals of emerging concern: some approaches being used in Canada and the USA

Derek Muir^{1,2} and Phil Howard³

¹ Dept of Chemistry, University of Toronto, Toronto ON ²Environment Canada, Water Science and Technology Directorate, Burlington, ON Canada ³ SRC, Inc., North Syracuse, NY, USA

Email: derek.muir@ec.gc.ca

Prioritising chemicals of emerging concern: some approaches being used in Canada and the USA

Outline

- The challenge of identifying CECs
 - Screening long lists, categorization and assessment
- Some prioritisation efforts in North America
 - Environment Canada DSL categorization
 - US EPA prioritisation and ToxCast initiatives
 - prioritisation schemes in California
- Howard and Muir categorization & prioritisation scheme
 - selecting P&B chemicals from "industrial" chemicals & pharmaceuticals, and transformation products
- Limitations of inventory screening
- Conclusions relevance to NORMAN prioritisation initiative

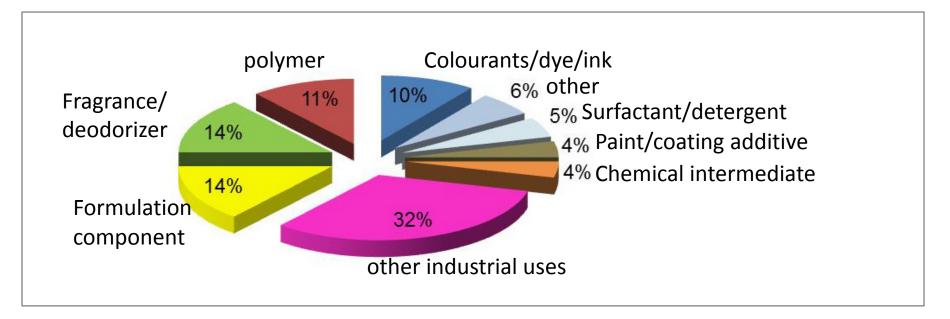
The Universe of Chemicals Globally

- 73,000,000 organic + inorganic substances (2013)
- Commercially available: 19,184,000
- inventoried/regulated chemicals: 308,000
- in commerce in USA, EU, Japan, China ~150,000
- production > 1 tonne/year ~ 30,000
- routinely measured in environmental media <500

USA

- •Toxic Substances Control Act (TSCA) and TSCA Inventory update originally 62,000 (1976), now ~84,000
- List of "Industrial" chemicals recently in production or imported is much smaller:
 - •2002 = 13,760 (>10,000 lbs)
 - •2006 = 6,700 (>25,000 lbs)

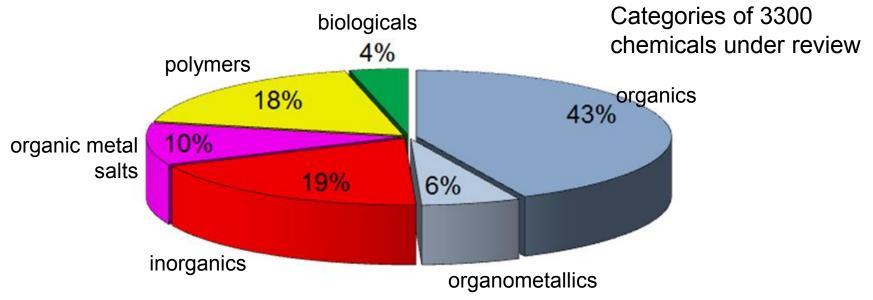
these numbers include organics and inorganics


Other inventories – Europe and the Asia-Pacific region

Country/region	Inventory name	Number of substances	Updated?
European Union	REACH	143,000 10,500	 pre-registered as of 09/11 Registered as of 09/13
		~30,000	 anticipated > 1 t/year
China	IECSC	46,000	•Yes, since 2003
Canada	DSL NDSL	26,000 58,000 (mirrors TSCA)	DSL inventory update underway
Japan	ENCS	20,600 (Existing) ~20,000 "New"	Established 1973 100-800 new substances/year

Also Australia, South Korea, Philippines, Taiwan maintain inventories

Screening and prioritising of chemical inventory lists – the Canadian experience


- 23,000 chemicals similar to TSCA inventory
- chemicals which were imported or manufactured in Canada at > 100 kg in the period 1984-86
- Screened and categorized organics using a suite of QSPR/QSARs
- For polymers and organometallics used expert judgment

 3800 chemicals categorized as potential environmental CECs based on persistence, bioaccumulation and/or predicted toxicity

Risk assessment of the selected chemicals – theCanadian experienceImage: CanadaEnvironment
CanadaEnvironment
Canada

- 3,800 chemicals originally selected for assessment in 2006
- 500 have been assessed (persistence, bioaccumulation and ecotox)
 - by requesting data from industry
 - Supporting research and monitoring
 - 3300 currently under review to be completed by 2020

• Canada is the first country to try to fully assess its chemical inventory list

Rapid screening approach for substances not P and/or B & T

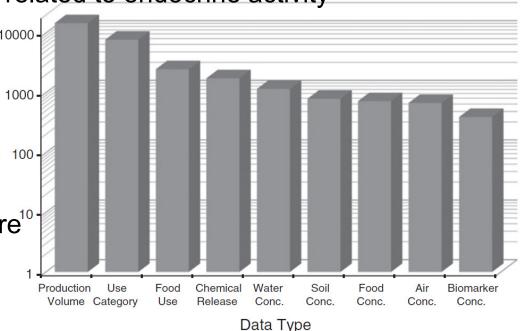
Low priority - no further assessment

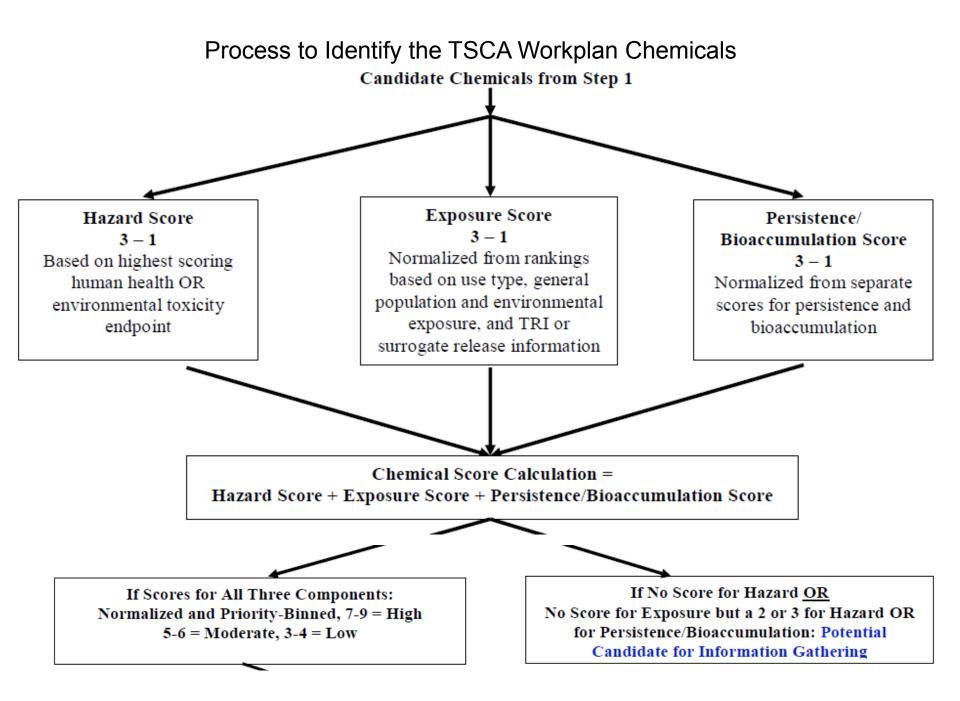
Current priorities for eco-risk assessment in Canada (Chemicals Management Plan)

Grouping *	# individuals
Replacement BFRs	8
Phosphate based FRs	9
Aromatic, aliphatic and alicyclic esters	45
Benzothiazole and benzotriazoles	16
Hindered phenols (antioxidants)	20
Inorganics/metals: Lanthanides, PGEs, Bi, TI	~30
Musks	10
Phthalates	10
Resin and Rosin Acids/esters	34
Substituted phenyl and diphenyl amines	~50

* + 23 other groups of lower priority

US EPA Activities related to prioritisation


- 83 chemicals selected for prioritisation under TSCA Workplan (2012-13)
 - ~5 chemicals per year
- Development of ToxCast and the ACToR database


ToxCast

- 1860 unique compounds as of 2013
- High throughput screening, high-content screening and genomics techniques
- 767 test chemicals (e.g., pesticides, industrial chemicals, drugs, food additives, fragrances, etc.)
- 800 unique chemicals specifically related to endocrine activity
- 135 "failed pharma" compounds 10000.

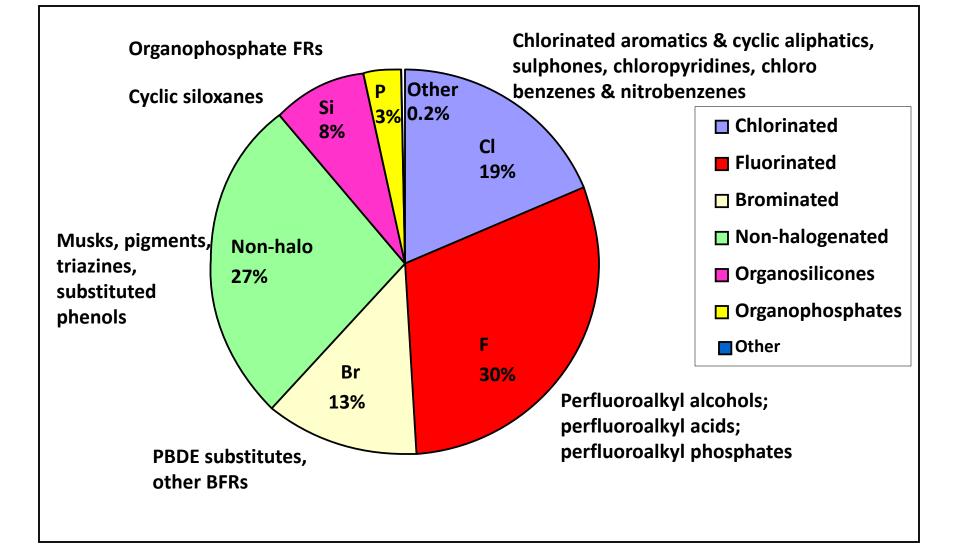
ACToR database

- ~500,000 individual compounds
- Screened with EPISuite 4.1
 - BCF/BAF, BIOWIN
- Limited information use & expositive¹⁰ info for most chemicals
 Eg production volume ~ 14,000
- Egeghy et al STOTEN 2012

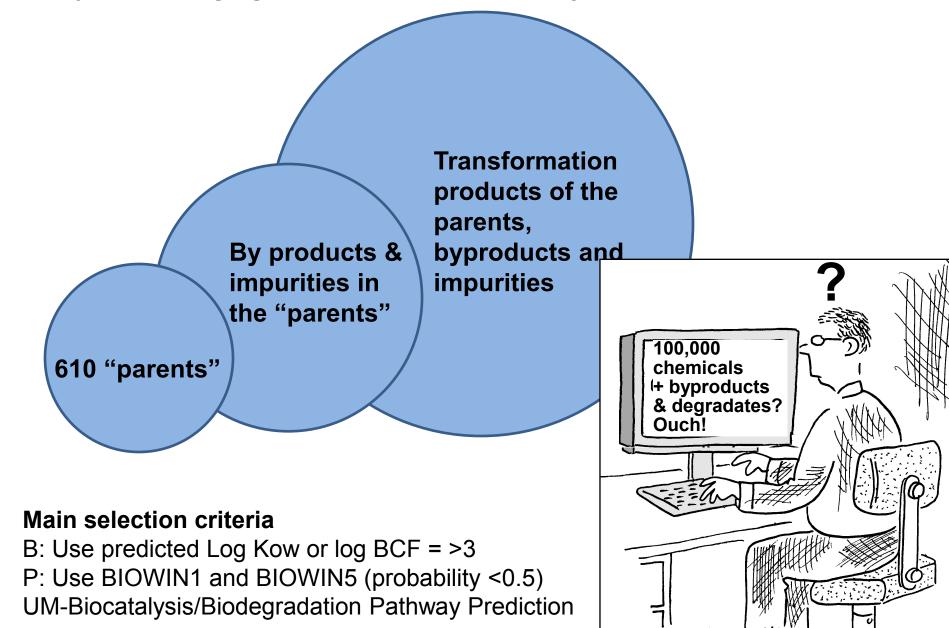
Howard and Muir (ES&T 2010, 2011, 2012) screening industrial organics and pharmaceuticals

	•		
Source	No.	Reporting threshold	Reporting date
	substances		
US EPA High Production	4049	454 tonnes/yr	Post-1990
Volume (HPV) programs			
US EPA TSCA Inventory Update	13,958	4540 kg/yr	IUR reporting years;
Rule (IUR)			1986 to 2002
Canadian DSL categorization	11,317	>100 kg	Mid-1980s
UVCBs*	3059	>100 kg	Mid-1980s
UVCDS	2022	>100 Kg	IVIIU-13002
TSCA IUR update 2006	220	11,400 kg/yr	Reporting year 2006
	22.262		
Total "industrial" organics	22,263		
(after duplicates removed)			
Pharmaceuticals	2584	All with known	April 2011
		molecular	
		structures	

*UVCBs = Unknown, of Variable Composition, or of Biological Origin – organic chemicals


Results of industrial organics and pharmaceutical screening Industrial organics

Category	Screening/assessment Criteria	Prioritisation approach	#
22,263	 Predicted BCF: >1000 Atmospheric Oxidation: >1 day Log K_{air-water} >-5 and <-1 	Predicted with EPISuite Exceeds Threshold for all 3 criteria	105
	 Analogs Chemical class (Br, Cl, F, I, Si, cyclic HCs) Biodegradability 	Exceed threshold for 1 or more criteria "Rules of Thumb" for biodegradability	505


Pharmaceuticals

Detected	•	Detection in environmental media	Detection	275
297 HPV	•	Predicted BCF: >100 (neutral species)	Exceeds Threshold for P & B	58
pharmas	•	BIOWIN1 or BIOWIN5 probability <0.5	"Rules of Thumb" for	
	•	Recalcitrant structural group	biodegradability	
2221 non HPVs	•	Same as for HPV pharmas	Same as for HPVs	364

Classes of the 610 Priority Chemicals

Screening for transformation products could present a major challenge given all possible pathways and products

Problems with this screening approach

- Focussing on registered chemicals ignores low volume chemicals that could be toxic to aquatic life
 - e.g. synthetic estrogen is low volume but an important ED in surface waters

- other pharmaceuticals with endocrine disruption, antimicrobial or other unique biological activity
- Many "industrial chemicals" may never be released to the environment
 - many low volume chemicals are designed to be released e.g. in personal care products, pesticides
- Screening of chemical inventory lists doesn't capture degradation products or byproducts
- Many chemicals are difficult to assess with current science
 - Can be acids or organometallics
 - These may constitute up to 2/3 of registered chemical lists

A more targeted approach is possible with pharmaceuticals, pesticides and personal care products

- Screening based on properties and use
- Generally chemical structures and important
 physical-chemical properties are known
- Some chronic toxicity information available especially for pesticides
- Quantities in use and use area (for pesticides) are known

Screening based on environmental occurrence in surface waters

- ~ 300 pharmaceuticals have been detected
- ~ 140 pesticides routinely measured
- ~ 45 personal care product chemicals widely measured
- Total of 1150 chemicals measured in water out of the 500,000 in the ACToR database

Chemical Prioritization in California

- Science Advisory Panel for "Monitoring CECs in California's Aquatic Ecosystems" (2012)
- Selected 82 chemicals for initial screening based on
 - Focussing on occurrence, toxicity and methods
 - published lists and availability of toxicological information
 - Availability of analytical methods and commercial labs
- Used three representative receiving water scenarios recommended 15 chemicals for State-Wide monitoring

		-		
Industrial/personal care	Pharmaceutical			
Bis(2-ethylhexyl) phthalate	Estrone	Bifenthrin	Chemicals of Emerging Concern (CECs) in California's Aquatic Ecosystems	SCCW
Butylbenzyl phthalate	Ibuprofen	Permethrin	in Gamorina s'riquare Deosystems	Pro-
Bisphenol A	17-beta estradiol	Chlorpyrifos	Recommendations of a Science Advisory Panel	
p-Nonylphenol	Diclofenac			Established 1
Galaxolide (HHCB)	Triclosan		Paul D. Anderson Nancy D. Denslow	
PBDE -47 and 99			Jörg E. Drewes Adam W. Olivieri	
PFOS			Daniel Schlenk Geoffrey I. Scott	
			Shane A. Snyder	

Conclusions and Future Directions

- This presentation mainly addresses the development of a list of potential new or data poor "emerging" chemicals of concern
- Compatible with NORMAN data gathering and gaps identification
- Main application is for non-target screening e.g. using high res MS and/or bioanalytical screening
- Many challenges to the screening approach
 - Robust QSPR/QSARs work well but only for a limited range of organic chemicals
 - Ionizable organics and organometallics together represent high proportion of commercial chemicals and are poorly modelled
 - Emissions, uses, transformation products/rates often unknown thus high uncertainty in risk assessment/PEC modelling phase
 - We don't just need a "harmonised European approach to prioritisation" but one that is harmonised globally

Acknowledgements

- Funding sources
 - US EPA Great Lakes National Program Office (GLNPO)
 - Environment Canada: Great Lakes Action Plan V and Chemical Management Plan
- Contributors and supporters
 - Ted Smith, US EPA, Great Lakes National Program Office, Chicago
 - Meg Sedlak, San Francisco Estuary Institute, Richmond CA
 - Don Mackay, Trent University, Peterborough ON Canada