

NORMAN activities on prioritisation: Outlook, what's next

Valeria Dulio, INERIS Valeria.dulio@ineris.fr

NORMAN – SOLUTIONS Workshop Paris, 24-25 June 2014

maîtriser le risque pour un développement durable

The overall approach

 Categorisation – to allocate substances to <u>action categories</u>

2. Prioritisation – to define <u>priorities</u> within <u>each action category</u>

- New candidate substances
 - Revision of the current list of emerging substances, taking into account input from:
 - a) non-target screening,
 - b) EDA studies
 - c) etc...
- Exposure index:
 - Inclusion of an exposure index based on production / usage (i.e. tonnages) and use pattern to allow for improved prioritisation of compounds never monitored but expected to be present in the aquatic compartment

- EMPODAT Effect data module and lowest PNEC derivation
 - Improved metadata and criteria for assessment of reliability and relevance of tests, applying the CRED system (Criteria for Reporting and Evaluating Ecotoxicity Data, by Agestrand et al. 2011)
 - Implementation of a link between ChemProp and EMPODAT for chemical and (eco)toxicological profiling, using QSAR predictions to derive provisional PNEC (P-PNEC)

- Improved risk assessment
 - Going beyond PEC/PNEC ratios for individual substances
 - Identification of mixture toxicity drivers
 - Using field-based MOA-specific bioassays to identify relevant compound classes

Thank you for your attention

Leaders of the activity	
Valeria Dulio - INERIS, FR	Working Group leader
Peter C. Von der Ohe, UBA, DE	Ecotoxicity sub-group leader
Anja Derksen - AD eco advice, NL	Ecotoxicity sub-group leader

Working Group experts

Marlene Ågerstrand	Stockholm University	SE
Laurence Amalric	BRGM	FR
Sandrine Andres	INERIS	FR
Ludek Blaha	Recetox	CZ
Werner Brack	UFZ	DE
Eva Brostrom	IVL	SE
Hélène Budzinski	University of Bordeaux	FR
Stellan Fisher	KEMI	SE
James Franklin	PlasticsEurope	EU
Armelle Hebert	VEOLIA Environnement	FR
Juliane Hollender	EAWAG	СН
Valérie Ingrand	VEOLIA Environnement	FR
Alice James-Casas	INERIS	FR
Martin Keller	BfG	DE
Vera Ocenaskova	T. G. Masaryk Water Research Inst.	CZ
Willie Peijnenburg	RIVM	NL
Zuzana Rabova	Recetox	CZ
Patrick Roose	MUMM	BE
Heinz Ruedel	Fraunhofer-IME	DE
Merijn Schriks	KWR	NL
Dieter Schudoma	UBA	DE
Jaroslav Slobodnik	EI	SK
Pierre-François Staub	ONEMA	FR

NORMAN Association

Network of reference laboratories and related organisations for monitoring and bio-monitoring of emerging environmental substances

Working Group on Prioritisation of Emerging Substances

NORMAN Prioritisation framework for emerging substances April 2013

Edited by Valeria Dulio & Peter C. von der Ohe

NORMAN Association N° W604002510 Rue Jacques Taffanel - Parc Technologique ALATA - 66550 VERNEUIL EN HALATTE (France) Internet : <u>www.norman.network.net</u>

- Substance Factsheets
 - Physico-chemical data from databases and QSAR
 - Overview of quality-assessed ecotoxicological 'rawdata', including the key study
 - Summarising the exposure data
 - Prioritisation indicators and scores
 - Current risk assessment status and priority

→All you want to know in one place!
- available on the NORMAN website -

Definition: Lowest PNEC (water) (ref. NORMAN Framework – Section 5.2.3.1)

* back-calculated « PNECwater sec pois » and « PNECwater, hh food » expressed in µg/L

Lowest effect threshold among EQS, PNEC_{NOEC/AF}, PNEC_{LC50/AF}, P-PNEC, PNEC_{biota sec pois}, PNEC_{biota hh food}

NORMAN Prioritisation criteria

Exposure relevance:

- N° of countries/sites with analyses > LOQ, frequency of quantification
- Use pattern

(Eco)toxicological relevance / Hazardous properties :

- PBT, vPvB citeria
- CMR properties
- Endocrine disruption potential
- Novel end points (behavioural effects)

Risk indicators:

- Frequency of exceedence of the PNEC (spatial distribution of impact)
- Extent of exceedance of the PNEC (intensity of impact)

PBT, vPvB criteria (based on Annex XIII REACh)

Persistence (P):

 T1/2: Kühne R, 2007. Estimation of compartmental half-lives of org. comp. - structural similarity versus EPI-Suite. QSAR Comb. Sci. 26: 542-549

Bioccumulation (B):

• BCF (B): Experimental data when available + UFZ Models

Toxicity (T):

- *T*+: Lowest PNEC < 0.01 μg/L
- *T*: Lowest PNEC < 0.1 μg/L

Existing PBT / vPvB classifications:

International PBT/POP Lists

Final PBT score: value between 0 and 1 [SUM (P + B + T) + PBT / vPvB] / 4

CMR effects (Human health toxicity)

- EU Regulation on Classification, Labelling and Packaging (CLP, EC 1272/2008)
- IARC Report on carcinogens

Final CMR score: value between 0 and 1 CMR, category 1 : 1 CMR, category 2 : 0.75 CMR, category 3 : 0.5 Under examination: 0.5 Not examined : 0.25 Examined and classified as not CMR: 0

Endocrine disruption effects

- Reviews on EDs by the EU Commission: (EU Commission 2007)
- "SIN List" (Substitute It Now!) (Chem. Sec SIN List 2.0)
- IEH Report on Chemicals purported to be endocrine disrupters(IEH Report, 2005)

Final ED score: value between 0 and 1 Proven ED effect : 1 Suspect ED effect: 0.5 Not examined: 0.25 Examined and classified as not ED: 0

Risk indicators

To address the intensity of impact:

Extent of Exceedance = MEC95 / Lowest PNEC

Where,

- *MEC95 (95th percentile of the max conc. at each site)*
- Lowest PNEC
- Equivalent to PEC/PNEC

Score for "Exceedance of environmental threshold" MEC95/lowest PNEC <1 = 0 10≥ MEC95/lowest PNEC≥1 =0.1 100≥ MEC95/lowest PNEC>10 = 0.2 1000≥ MEC95/lowest PNEC>100 = 0.5 MEC95/lowest PNEC>1000 = 1

Risk indicators

To address the spatial exposure aspects:

Frequency of Exceedance = n / N

Where,

- *n* is the number of sites with MECsite > Lowest PNEC
- N is the total number of sites where the substance was measured

Score: value between 0 and 1

- Cat. 1, 3, 6: calculated using RECENT DATA
- Cat. 2, 4, 5: calculated using ALL DATA (all YEARS)

