Passive Sampling Methods for Managing Contaminated Sediments - A November 2012 SETAC Workshop

INVESTMENTS IN EDUCATION DEVELOPMENT

Passive Sampling Methods for Managing Contaminated Sediments - A November 2012 SETAC Workshop

Presented by: Peter Chapman

(Golder Associates Ltd, Canada)

Other Steering Committee Members:

Thomas Parkerton	(ExxonMobil, USA)
Keith Maruya	(Southern California Coastal Water Research Project, USA)
Beate Escher	(University of Queensland, Australia)
Upal Ghosh	(University of Maryland Baltimore County, USA)
Marc Greenberg	(USEPA, USA)
Susan Kane Driscoll	(Exponent Inc., USA)
Peter Landrum	(Ann Arbor, USA)
Michael Lydy	(Southern Illinois University, USA)
Philipp Mayer	(Aarhus University, Roskilde, Denmark)
Willie Peijnenburg	(RIVM, The Netherlands)

Background

- Management of contaminated sediments includes source and institutional controls, remediation, and evaluating effectiveness of selected management actions
- Contaminant analyses for bulk or whole sediment are used to support decision-making; however...
 - Poor predictor of exposure and subsequent risk since contaminant bioavailability ignored
 - EqP models to predict freely dissolved concentrations in sediment pore water a step forward but do not account for sorption and sequestration processes
- Driven partly by cost of remedial decisions, these challenges have led to advances in use of passive sampling methods (PSMs)

- Goal: quantify bioavailability of contaminants in sediments

Use of PSMs for Contaminated Sediments

http://wcs.webofknowledge.com

What Do We Mean by Passive Sampling Methods?

• PSMs broadly defined as:

Techniques that quantify bioavailability based on the diffusion and subsequent partitioning of contaminants from sediment to a reference sampling phase ("passive sampler")

 Rely on the concept of chemical activity which aims at determination of freely dissolved concentrations (C_{free}) in interstitial (pore) water

Focus at the workshop on chemical-activity based PSMs that target reliable measurement of $C_{\rm free}$ for hydrophobic organic contaminants (HOCs)

Desorption not considered (concentration that can be rapidly desorbed from the sediment using a commercial sorbent that serves as an infinite sink [e.g., Tenax beads or XAD resin])

Variety of PSM Phases and Configurations

Passive Sampling Phase or Media	Configuration	Target
		Analytes
Polydimethylsiloxane	Coated fiber, vial	HOCs
Polyethylene (PE)	Film/sheet, tube	HOCs
Polyoxymethylene (POM)	Film/sheet	HOCs
Ethylvinylacetate	Coated vial	HOCs
Silicone rubber	Sheet, Ring	HOCs
Gels (e.g., DGT)	Thin film "DGT"	Metals
Resin impregnated polyacrylamide gel	"Gellyfish"	Metals
Metal-chelating media	Disk/membrane	Metals
SPME on c PE	POM	
IT S		
THUR 2 2 and 3		and Blackston Black

Solid phase microextraction

... So Why Aren't PSMs More Widely Used?

- Key barriers to regulatory acceptance and use include:
 - Failure of practitioners and decision-makers to understand the advantages and limitations of these chemical-based approaches over traditional analytical methods
 - Confusion regarding the plethora of different methods and formats that are increasingly reported in the literature
- Lack of consensus on:
 - Technical guidance for PSM selection and standardization
 - Use in regulatory decision-making contexts
- Limited experience in use and analysis of PSMs by commercial laboratories
- Uncertainty over cost versus benefit

Purpose, Scope, and Goals of Workshop

- Promote understanding of PSMs
- Provide consensus recommendations for increased use in contaminated sediment management process / decisions
- Six papers in review in IEAM:
 - Passive Sampling in Contaminated Sediment Assessment: Building Consensus to Improve Decision-Making
 - Passive Sampling Methods for Contaminated Sediments: State of the Science for Organic Contaminants
 - "": State of the Science for Metals
 - "": Scientific Rationale Supporting Use of Freely Dissolved Concentrations
 - "": Practical Guidance for Selection, Calibration and Implementation
 - "": Risk Assessment and Management

State of the Science

- Generally accepted that C_{free} provides more relevant exposure metric than total or bulk sediment chemistry
- Hydrophobic organic compounds (HOCs)
 - Significant literature available detailing calibration and application of PSMs in sediment assessment (>100 papers)
 - Estimates of C_{free} from PSMs shown to better predict measurement endpoints e.g. sediment bioaccumulation and toxicity

 Wide range of calibration parameters have been published for the various polymers and/or configurations of PSMs

State of the Science (cont'd)

- Metals (including metalloids and non-metals)
 - Literature on PSMs for sediment-associated metals is less established than for organics
 - Metal speciation renders PSM measurements more challenging to interpret and relate to endpoints of concern, e.g., bioaccumulation
 - Linkage to geochemical speciation models needed
 - Additional data showing benefits compared with and in addition to conventional risk assessment needed
 - Limited number of studies demonstrating PSM utility

MORE WORK WITH METALS IS NEEDED !

Scientific Rationale and Theoretical Considerations

- Consensus view that chemical activity is superior to bulk or "total" concentration in describing bioavailability of HOCs and metals in sediments
- Recognized that translating activity-based measurements into C_{free} in the interstitial water will facilitate improved communication and acceptance of PSM data
- At thermodynamic equilibrium, the chemical activity across environmental compartments is by definition equal
 - C_{free} is a proxy for activity in pore water and is directly related to concentration in the passive sampler

C_{free} Estimates from PSMs

- Measure the equilibrated polymer concentration (C_p)
- $C_{free} = C_p / K_{pw}$
- where K_{pw} is the substance-specific polymer-water partition coefficient = S_p / S_w (S = solubility in phase)

Thus, C_{free} not measured directly; depends on accurate K_{pw} values

Scientific Rationale and Theoretical Considerations (cont'd)

For successful use of PSMs to estimate C_{free} two critical conditions must be met:

- 1. Attainment of equilibrium (or near-equilibrium)
- 2. PSMs should not deplete local concentration of the target contaminant (thereby disrupting the pool available for exchange across compartments)
- In the absence of equilibrium (or near-equilibrium), correction using performance reference compounds (PRCs) may be possible – assuming reliable, validated methods for such correction available

Practical Guidance for Application in Laboratory and Field Settings

- Agreed that several PSMs ready for application
- Developed 5 key guiding principles for selection, preparation, implementation, and validation of PSMs
- 1. Define question(s) posed by managers to be addressed by measurement of C_{free} using PSMs

Endpoints addressed by PSMs

- Sediment toxicity
- •Benthic organism bioaccumulation
- •Transport (i.e., direction of flux, gradients)
- •Spatial extent delineation
- •Site-specific K_{oc}
- Model calibration / verification

2. Determine pros/cons of *ex situ* (bring sediment sample back to lab) versus *in situ* application of PSMs

Other Considerations

- •Site accessibility / security
- •Time / Cost
- Level of expertise required
- Regulatory considerations
- Importance of spatial resolution

(heterogeneity, grab vs. fine

scale)

Temporal resolution

3. Perform trade-off of key considerations to select the most appropriate PSM(s)

Technical Considerations

- •Target analytes (magnitude of K_{ow}, organic/inorganic)
- Physicochemical conditions
- •Time for deployment
- Performance specifications (sensitivity, accuracy, precision)
- Optimum phase / medium
- Commercial availability

4. Establish QA/QC guidelines

- Selection and use of appropriate pre-calibration parameters (e.g., K_{pw} values and potential temperature/salinity corrections)
- Provisions to ensure attainment of equilibrium or, alternatively, for correction to an equilibrium condition

5. Quantify PSM measurement uncertainty and propagate through the risk assessment

PSMs uses in sediment assessments and decision frameworks

- Nature and extent
- •Flux measurements
- •Evaluating remedial options
- •Exposure and risk assessment
- •Use in tiered assessment approaches

The uncertainty associated with C_{free} measurements using PSMs is expected to be only a fraction of the uncertainty associated with the status quo

Risk Management Applications

- C_{free} gives managers a better predictor of bioavailability for key exposure pathways:
 - 1. Direct exposure to biota (toxicity, bioaccumulation)
 - 2. Flux from sediments to overlying water column
 - 3. Exposures in water column

Measurements of C_{free} with PSMs can reduce uncertainty in risk assessment and subsequent risk management decisions

Risk Management Applications (cont'd)

- Improvements to management applications utilizing C_{free} determinations and data:
 - Ambient or compliance monitoring programs
 - Identifying contaminant sources
 - Dose metric to develop exposure concentration-response relationships—can inform development of cleanup goals
 - Understanding of risk zones based on likelihood of effects
 - Modeling (input parameters or verification data)
 - Evaluating remedial options and designs
 - Short- and long-term monitoring of chemical bioavailability
 - Evaluating results of sediment treatment, disposal, or beneficial reuse following management actions
 - Evaluating remedy effectiveness

Communication and Outreach

- Consensus guidance needed (scientific/technical and regulatory)
- Training opportunities for PSM users
- Key stakeholders should be engaged at sites where PSMs are being considered by technical teams
- Case study presentations showing value in decisions

Participants (* = Steering Committee)

Rachel Adams Ian Allan Mayumi Allinson Kim Anderson Sabine Apitz **Chris Beegan Todd Bridges** Steven Brown Robert Burgess John Cargill Peter Campbell Peter Chapman* Yongju Choi Beate Escher* Will Gala

Jay Gan **Upal Ghosh*** Frank Gobas **Todd Gouin** Marc Greenberg* Phillip Gschwend Amanda Harwood Steven Hawthorne Paul Helm Michiel Jonker Susan Kane-Driscoll* Peter Landrum* Huizhen Li Michael Lydy* Keith Maruya*

Philipp Mayer* **Charles Menzie** Megan McCulloch Julie Mondon Munro Mortimer Jochen Mueller Amy Oen **Thomas Parkerton*** Willie Peijnenburg* **Danny Reible** James Shine Foppe Smedes Jing You **Gesine Witt** Eddy Zeng*

Other Acknowledgements

Workshop Sponsors

- Southern California Coastal Water Research Project
- **ExxonMobil Corporation**

- US Department of Defense Strategic Environmental Research and **Development Program**
- **Department of Environmental Sciences,** University of California, Riverside

Assistance

Stephen Weisberg Angelica Bajza **Maribel Gonzalez**

Wenjian Lao **Abigail Joyce** Mallory Pirogovsky Kai Zhang 23

